(d) n=0 M8 u(I + u) 3n -X

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

1.D using root test

2
PRACTICE EXERCISES FOR $11.8, §11.9, AND §11.10
1. Find the radius of convergence and interval of convergence of the power series.
1
TD
12"
an= (x+3)
ant) - (x+2) • 4²
(n+1) ₂2 (1+1)
an (ntl)
(a)
(b)
(c)
(d)
M8 M8 IM8 IM8 IM
1
n2n
(e) Σ
n=0
n²2
22-1-1 (0*-
n!
(x+2)²²a=2
lim /01/2+1/1 = 1 im 2(71) √x+2) = 1/-4x+2) =
호 금
1/2 -1x+²2) = 12x+1²1 1/2 x=2 x=1
(3x - 1)"
(x-3)"
(n+1)"
3n
1
2n+1
-xn
-(x-1) 2n
2. Find the Taylor series of the function f(x) at the point a.
(a) f(x) = ²x, a=1
1
(b) f(x) =
1-x
(c) f(x) = lnx,
3. Find the Maclaurin series of the function f(x).
a=2
(x+2) ++^)
(x+2ja (^+1)=2
n
a=3
Transcribed Image Text:2 PRACTICE EXERCISES FOR $11.8, §11.9, AND §11.10 1. Find the radius of convergence and interval of convergence of the power series. 1 TD 12" an= (x+3) ant) - (x+2) • 4² (n+1) ₂2 (1+1) an (ntl) (a) (b) (c) (d) M8 M8 IM8 IM8 IM 1 n2n (e) Σ n=0 n²2 22-1-1 (0*- n! (x+2)²²a=2 lim /01/2+1/1 = 1 im 2(71) √x+2) = 1/-4x+2) = 호 금 1/2 -1x+²2) = 12x+1²1 1/2 x=2 x=1 (3x - 1)" (x-3)" (n+1)" 3n 1 2n+1 -xn -(x-1) 2n 2. Find the Taylor series of the function f(x) at the point a. (a) f(x) = ²x, a=1 1 (b) f(x) = 1-x (c) f(x) = lnx, 3. Find the Maclaurin series of the function f(x). a=2 (x+2) ++^) (x+2ja (^+1)=2 n a=3
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,