D Incorrect 3p n = 3 3p l = 0 Incorrect The possible values of me for the 3p subshell are -2, -1,0, +1, +2 -1,0, +1 Incorrect 0 -3, -2,-1, 0, +1, +2, +3

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
### Quantum Numbers for the 3p Subshell

**Incorrect Inputs:**

1. **Principal Quantum Number (\( n \)) for 3p**:
   \[
   3p \quad n = 3
   \]
   *Result: Incorrect*

2. **Azimuthal Quantum Number (\( \ell \)) for 3p**:
   \[
   3p \quad \ell = 0
   \]
   *Result: Incorrect*

**Question:**

The possible values of magnetic quantum number (\( m_\ell \)) for the 3p subshell are:

- \(-2, -1, 0, +1, +2\)
- \(-1, 0, +1\)
- \(0\)
- \(-3, -2, -1, 0, +1, +2, +3\)

*A selection was made for option "0" which is incorrect.*

**Explanation:**

For a 3p subshell:
- The principal quantum number (\( n \)) is correctly \(3\).
- The azimuthal quantum number (\( \ell \)) for a 'p' orbital is \(1\), not \(0\).
- The magnetic quantum number (\( m_\ell \)) can have values from \(-\ell\) to \(+\ell\), which are \(-1, 0, +1\) for a p orbital.

Correct responses are critical for understanding the electronic configuration of atoms.
Transcribed Image Text:### Quantum Numbers for the 3p Subshell **Incorrect Inputs:** 1. **Principal Quantum Number (\( n \)) for 3p**: \[ 3p \quad n = 3 \] *Result: Incorrect* 2. **Azimuthal Quantum Number (\( \ell \)) for 3p**: \[ 3p \quad \ell = 0 \] *Result: Incorrect* **Question:** The possible values of magnetic quantum number (\( m_\ell \)) for the 3p subshell are: - \(-2, -1, 0, +1, +2\) - \(-1, 0, +1\) - \(0\) - \(-3, -2, -1, 0, +1, +2, +3\) *A selection was made for option "0" which is incorrect.* **Explanation:** For a 3p subshell: - The principal quantum number (\( n \)) is correctly \(3\). - The azimuthal quantum number (\( \ell \)) for a 'p' orbital is \(1\), not \(0\). - The magnetic quantum number (\( m_\ell \)) can have values from \(-\ell\) to \(+\ell\), which are \(-1, 0, +1\) for a p orbital. Correct responses are critical for understanding the electronic configuration of atoms.
### Quantum Numbers and Electron Configuration

#### Chemical Symbol Determination
Give the chemical symbol for the element with the ground-state electron configuration \([Ne]3s^23p^2\).

- **Symbol:**
  - Input: 0
  - **Status:** Incorrect

#### Quantum Numbers Analysis
Determine the quantum numbers \( n \) and \( \ell \) and select all possible values for \( m_\ell \) for each subshell of the element.

- **For \( 3s \) subshell:**
  - \( n = \) 
    - Input: 1
    - **Status:** Incorrect
  
  - \( \ell = \) 
    - Input: 2
    - **Status:** Incorrect

#### \( m_\ell \) Values Selection
The possible values of \( m_\ell \) for the \( 3s \) subshell are:

- Options:
  - \((-1, 0, +1)\)
  - \((-3, -2, -1, 0, +1, +2, +3)\)
  - \((-2, -1, 0, +1, +2)\)
  - \(0\) (Selected)

The selection is incorrect based on the context of the \( 3s \) subshell, where only the value \(0\) is applicable as \( m_\ell \) is determined by \(\ell = 0\).
Transcribed Image Text:### Quantum Numbers and Electron Configuration #### Chemical Symbol Determination Give the chemical symbol for the element with the ground-state electron configuration \([Ne]3s^23p^2\). - **Symbol:** - Input: 0 - **Status:** Incorrect #### Quantum Numbers Analysis Determine the quantum numbers \( n \) and \( \ell \) and select all possible values for \( m_\ell \) for each subshell of the element. - **For \( 3s \) subshell:** - \( n = \) - Input: 1 - **Status:** Incorrect - \( \ell = \) - Input: 2 - **Status:** Incorrect #### \( m_\ell \) Values Selection The possible values of \( m_\ell \) for the \( 3s \) subshell are: - Options: - \((-1, 0, +1)\) - \((-3, -2, -1, 0, +1, +2, +3)\) - \((-2, -1, 0, +1, +2)\) - \(0\) (Selected) The selection is incorrect based on the context of the \( 3s \) subshell, where only the value \(0\) is applicable as \( m_\ell \) is determined by \(\ell = 0\).
Expert Solution
Step 1

standard for principle  quantum number 

l standards for azimuthal quantum number 

ml stands  for magnetic quantum number 

 

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Atomic Structure and Spectra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY