Cylindrical coordinates (p, ó, z): ê, = cos o î + sin ø 3, ês = - sin ø î + cos o ĵ, êz = k (4) (5) COS (6) Spherical coordinates (r, 0, »): ê, = sin 0 cos o î + sin 0 sin ø ĵ + cos 0 k, êg = cos 0 cos o î + cos 0 sin ø ĵ – sin 0 k, ês = - sin o î + cos j. (7) (8) (9) a) Find the expressions of (êr, êo, ês) in terms of (êp, êp, êz). b) A vector can be expressed in terms of any basis. In particular, we can write: V = V,êp + V,êy + V,ê; = V,êp + Vyês + Vyê; = V,ê, + Voêo + Vgêp. (10) %3D In terms of column vector notation we write

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
Question 2:
Three frequently used coordinates in R³ are 1: Cartesian Coordinates, 2: Cylindrical coordi-
nates, and 3: Spherical Coordinates. Unit vectors in these coordinates are the following.
Cartesian coordinates (r, y, z):
êz = î,
êy = 3,
ê̟ = k.
(1)
(2)
(3)
Cylindrical coordinates (p, ø, z):
ê, = cos o î + sin ø j,
ês = - sin o i + cos o 3,
êz = k
(4)
(5)
(6)
Spherical coordinates (r, 0, ø):
ê, = sin 0 cos o î+ sin 0 sin ø ĵ + cos 0 k,
êg = cos 0 cos o i+ cos 0 sin ø j – sin 0 k,
ês = - sin o î + cos o j.
(7)
(8)
COS
(9)
a) Find the expressions of (êr, êo, ês) in terms of (êp, ês, êz).
b) A vector can be expressed in terms of any basis. In particular, we can write:
V = V,ê, + V,êy + V,ê; = V,ê, + Vgêg + Vệê; = V,ê, + Vạêp + Viêg.
(10)
In terms of column vector notation we write
(Ve
V,), Vci = [ V), Vsp
(11)
Vcr =
V:
Ve
The relations between them can be expressed in terms of matrix:
Vcr = Pcr+-ciVcı, Vcr = Pcr+SpVsp;
Vci = Pcu-CrVor, Vci = Pcl-SpVsp:
Vsp = Pspt-Cr Vcr; Vsp = Psp+-CiVci,
(12)
(13)
(14)
where Pcrt-Cl, Pcre-Sp; Pcu-Cr; Pcu-sSp; Pspt-Cr; Pspt-Cl are all 3x3 matrices. Without explicitly
finding the matrices show that:
Psp-CrPcre-Sp = I3, Psp-Cl = Pspe-CPC+-Cl-
(15)
%3D
%3D
c) Now explicitly compute Pspe-Cl and show that Pspe-Cl E SO(3).
Transcribed Image Text:Question 2: Three frequently used coordinates in R³ are 1: Cartesian Coordinates, 2: Cylindrical coordi- nates, and 3: Spherical Coordinates. Unit vectors in these coordinates are the following. Cartesian coordinates (r, y, z): êz = î, êy = 3, ê̟ = k. (1) (2) (3) Cylindrical coordinates (p, ø, z): ê, = cos o î + sin ø j, ês = - sin o i + cos o 3, êz = k (4) (5) (6) Spherical coordinates (r, 0, ø): ê, = sin 0 cos o î+ sin 0 sin ø ĵ + cos 0 k, êg = cos 0 cos o i+ cos 0 sin ø j – sin 0 k, ês = - sin o î + cos o j. (7) (8) COS (9) a) Find the expressions of (êr, êo, ês) in terms of (êp, ês, êz). b) A vector can be expressed in terms of any basis. In particular, we can write: V = V,ê, + V,êy + V,ê; = V,ê, + Vgêg + Vệê; = V,ê, + Vạêp + Viêg. (10) In terms of column vector notation we write (Ve V,), Vci = [ V), Vsp (11) Vcr = V: Ve The relations between them can be expressed in terms of matrix: Vcr = Pcr+-ciVcı, Vcr = Pcr+SpVsp; Vci = Pcu-CrVor, Vci = Pcl-SpVsp: Vsp = Pspt-Cr Vcr; Vsp = Psp+-CiVci, (12) (13) (14) where Pcrt-Cl, Pcre-Sp; Pcu-Cr; Pcu-sSp; Pspt-Cr; Pspt-Cl are all 3x3 matrices. Without explicitly finding the matrices show that: Psp-CrPcre-Sp = I3, Psp-Cl = Pspe-CPC+-Cl- (15) %3D %3D c) Now explicitly compute Pspe-Cl and show that Pspe-Cl E SO(3).
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Chain Rule
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,