CP where d (1- (B+D)) -e (A+C) > 0, e b² (A+C) (e+d) [K₂ + (A+C)] [d K₂ −e (A+C)]² ³ PQ= P+Q= b [d (1 − (B+ D)) − e (A+C)]' (32) (33)
CP where d (1- (B+D)) -e (A+C) > 0, e b² (A+C) (e+d) [K₂ + (A+C)] [d K₂ −e (A+C)]² ³ PQ= P+Q= b [d (1 − (B+ D)) − e (A+C)]' (32) (33)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
Explain the determine green and the information ti here
![The objective of this article is to investigate some
qualitative behavior of the solutions of the nonlinear
difference equation
bxn– k
X+1 = Axn+ Bxp–k+CXp-1+Dxp-o+
[dxn-k– ex-1
(1)
n= 0, 1,2, .....
where the coefficients A, B, C, D, b, d, e e (0,00), while
k, 1 and o are positive integers. The initial conditions
X-g,..., X_1,..., X_ k, ..., X_1, Xo are arbitrary positive real
numbers such that k < 1 < 0. Note that the special cases
of Eq. (1) have been studied in [1] when B= C= D= 0,
and k = 0,1= 1, b is replaced by
B=C= D=0, and k= 0, b is replaced by – b and in
[33] when B = C = D = 0, 1= 0 and in [32] when
A= C= D=0, 1=0, b is replaced by – b.
••..
- b and in [27] when
6.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd6e1725f-ce99-4ac2-8766-635487711a2a%2F109ead8e-e4d7-42d9-8131-f92ebf0a42cc%2Fessyiq9_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The objective of this article is to investigate some
qualitative behavior of the solutions of the nonlinear
difference equation
bxn– k
X+1 = Axn+ Bxp–k+CXp-1+Dxp-o+
[dxn-k– ex-1
(1)
n= 0, 1,2, .....
where the coefficients A, B, C, D, b, d, e e (0,00), while
k, 1 and o are positive integers. The initial conditions
X-g,..., X_1,..., X_ k, ..., X_1, Xo are arbitrary positive real
numbers such that k < 1 < 0. Note that the special cases
of Eq. (1) have been studied in [1] when B= C= D= 0,
and k = 0,1= 1, b is replaced by
B=C= D=0, and k= 0, b is replaced by – b and in
[33] when B = C = D = 0, 1= 0 and in [32] when
A= C= D=0, 1=0, b is replaced by – b.
••..
- b and in [27] when
6.
![Theorem 10. If 1 is even and k, o are odd positive integers,
then Eq. (1) has prime period two solution if the condition
(А+ C) (Зе— d) < (е+ d) (1-(В+ D),
(29)
is
valid,
(B+ D)
and
provided
d (1 — (В+ D) — е (А+С)>0.
< 1
Proof.If 1 is even and k,
are odd positive integers, then
Xn = Xp–1 and xn+1 = Xn-k = Xn-o. It follows from Eq.(1)
that
bP
Р- (А+C)Q+ (B+D) P —
(30)
(e Q– dP)'
and
bQ
Q= (A+C) P+(B+D) Q –
(31)
(e P- dQ)'
Consequently, we get
b
P+Q=
(32)
[d (1 — (В+ D)) — е (А+С)]"
where d (1– (B+D)) – e (A+C) > 0,
e b² (A+C)
PQ=
(e+d) [K2+(A+ C)][d K2 – e (A+C)]²"
(33)
-
where K2
(1– (B+D)), provided (B+ D) < 1.
Substituting (32) and (33) into (28), we get the condition
(29). Thus, the proof is now completed.O](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd6e1725f-ce99-4ac2-8766-635487711a2a%2F109ead8e-e4d7-42d9-8131-f92ebf0a42cc%2F2vqfbap_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Theorem 10. If 1 is even and k, o are odd positive integers,
then Eq. (1) has prime period two solution if the condition
(А+ C) (Зе— d) < (е+ d) (1-(В+ D),
(29)
is
valid,
(B+ D)
and
provided
d (1 — (В+ D) — е (А+С)>0.
< 1
Proof.If 1 is even and k,
are odd positive integers, then
Xn = Xp–1 and xn+1 = Xn-k = Xn-o. It follows from Eq.(1)
that
bP
Р- (А+C)Q+ (B+D) P —
(30)
(e Q– dP)'
and
bQ
Q= (A+C) P+(B+D) Q –
(31)
(e P- dQ)'
Consequently, we get
b
P+Q=
(32)
[d (1 — (В+ D)) — е (А+С)]"
where d (1– (B+D)) – e (A+C) > 0,
e b² (A+C)
PQ=
(e+d) [K2+(A+ C)][d K2 – e (A+C)]²"
(33)
-
where K2
(1– (B+D)), provided (B+ D) < 1.
Substituting (32) and (33) into (28), we get the condition
(29). Thus, the proof is now completed.O
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)