Could you please elaborate on the highlighted part, it goes too fast for me , please show it step by step , how do they suddenly get s2k?
Could you please elaborate on the highlighted part, it goes too fast for me , please show it step by step , how do they suddenly get s2k?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Could you please elaborate on the highlighted part, it goes too fast for me , please show it step by step , how do they suddenly get s2k?
![Lemma 14.11 Let Sn =
integer n.
Proof
n
k=1
= 1+
1
1
n
+-, where ne N. Then S2 ≥1+ for every positive
2
n
We proceed by induction. For n = 1, $₂¹ = 1 + and so the result holds for n = 1.
1
2
k
, where ke N. We show that S₂k+1 ≥ 1+
Assume that s₂k ≥ 1+
that
2
$2k+1 = 1+
1
2
= $₂k +
≥ S₂k +
= S₂k +
+
1
2k + 1
1
2k+1
2k
2k+1
1
2k+1
1
2k +2
1
2k+1
+
+
+
S2k +
k 1
≥1+=+ =1+
2 2
+
1
+
2
k + 1
2
+
1
2k+1
1
ok+1
By the Principle of Mathematical Induction, S2″ ≥1+
integer n.
n
IN
k+1
2
Now observe
for every positive](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8e237d3f-b8e6-4775-a6f9-5671b153aef2%2F56d40707-02a2-4437-b3a0-e9e2fbfe464d%2F9ewpqut_processed.png&w=3840&q=75)
Transcribed Image Text:Lemma 14.11 Let Sn =
integer n.
Proof
n
k=1
= 1+
1
1
n
+-, where ne N. Then S2 ≥1+ for every positive
2
n
We proceed by induction. For n = 1, $₂¹ = 1 + and so the result holds for n = 1.
1
2
k
, where ke N. We show that S₂k+1 ≥ 1+
Assume that s₂k ≥ 1+
that
2
$2k+1 = 1+
1
2
= $₂k +
≥ S₂k +
= S₂k +
+
1
2k + 1
1
2k+1
2k
2k+1
1
2k+1
1
2k +2
1
2k+1
+
+
+
S2k +
k 1
≥1+=+ =1+
2 2
+
1
+
2
k + 1
2
+
1
2k+1
1
ok+1
By the Principle of Mathematical Induction, S2″ ≥1+
integer n.
n
IN
k+1
2
Now observe
for every positive
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)