cotA+tanA Prove that sec2A. cotA - tanA
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Topic Video
Question
please help me with this.
![## Trigonometric Identity Proof
**Objective:**
Prove the following trigonometric identity:
\[ \frac{\cot A + \tan A}{\cot A - \tan A} = \sec 2A \]
**Proof:**
We'll start by using the definitions and identities of trigonometric functions to derive the result.
1. **Definition and Identities:**
\[
\cot A = \frac{\cos A}{\sin A}
\]
\[
\tan A = \frac{\sin A}{\cos A}
\]
2. **Substitute these into the given equation:**
\[
\frac{\frac{\cos A}{\sin A} + \frac{\sin A}{\cos A}}{\frac{\cos A}{\sin A} - \frac{\sin A}{\cos A}}
\]
3. **Combine the fractions in the numerator and denominator:**
\[
\frac{\frac{\cos^2 A + \sin^2 A}{\sin A \cos A}}{\frac{\cos^2 A - \sin^2 A}{\sin A \cos A}}
\]
4. **Simplify the fraction by multiplying numerator and denominator by \(\sin A \cos A\):**
\[
\frac{\cos^2 A + \sin^2 A}{\cos^2 A - \sin^2 A}
\]
5. **Use the Pythagorean identity (\(\cos^2 A + \sin^2 A = 1\)) in the numerator:**
\[
\frac{1}{\cos^2 A - \sin^2 A}
\]
6. **Express the denominator using the double-angle identity (\(\cos 2A = \cos^2 A - \sin^2 A\)):**
\[
\frac{1}{\cos 2A}
\]
7. **Recognize that \(\frac{1}{\cos 2A}\) is the definition of \(\sec 2A\):**
\[
\sec 2A
\]
Thus, we have proved that:
\[
\frac{\cot A + \tan A}{\cot A - \tan A} = \sec 2A
\]
This identity illustrates the relationship between cotangent, tangent](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9e6f2fcb-4128-4479-819e-77e934e4be0f%2F1988cf18-139f-43c3-ba07-a332e94c45bb%2F87xga9s.jpeg&w=3840&q=75)
Transcribed Image Text:## Trigonometric Identity Proof
**Objective:**
Prove the following trigonometric identity:
\[ \frac{\cot A + \tan A}{\cot A - \tan A} = \sec 2A \]
**Proof:**
We'll start by using the definitions and identities of trigonometric functions to derive the result.
1. **Definition and Identities:**
\[
\cot A = \frac{\cos A}{\sin A}
\]
\[
\tan A = \frac{\sin A}{\cos A}
\]
2. **Substitute these into the given equation:**
\[
\frac{\frac{\cos A}{\sin A} + \frac{\sin A}{\cos A}}{\frac{\cos A}{\sin A} - \frac{\sin A}{\cos A}}
\]
3. **Combine the fractions in the numerator and denominator:**
\[
\frac{\frac{\cos^2 A + \sin^2 A}{\sin A \cos A}}{\frac{\cos^2 A - \sin^2 A}{\sin A \cos A}}
\]
4. **Simplify the fraction by multiplying numerator and denominator by \(\sin A \cos A\):**
\[
\frac{\cos^2 A + \sin^2 A}{\cos^2 A - \sin^2 A}
\]
5. **Use the Pythagorean identity (\(\cos^2 A + \sin^2 A = 1\)) in the numerator:**
\[
\frac{1}{\cos^2 A - \sin^2 A}
\]
6. **Express the denominator using the double-angle identity (\(\cos 2A = \cos^2 A - \sin^2 A\)):**
\[
\frac{1}{\cos 2A}
\]
7. **Recognize that \(\frac{1}{\cos 2A}\) is the definition of \(\sec 2A\):**
\[
\sec 2A
\]
Thus, we have proved that:
\[
\frac{\cot A + \tan A}{\cot A - \tan A} = \sec 2A
\]
This identity illustrates the relationship between cotangent, tangent
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning