cos + cos 30 + cos 50+ sin+sin 30+ sin 50+ ..... + cos(2n-1)0 = ......+ sin(2n-1)0 : = sin 2n 2 sin 0 sin² no sin 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
8. Prove that
(a)
(b)
d
de
cos + cos 30 + cos 50 +
(b)
sin + sin 30 + sin 50+
Hint: Use Euler's formula and Geometric progression.
9. Prove that
(a)
1 + cos 0 + cos 20 +
sin+sin 20 +
10. Using the following definitions: sin
(a) sin²+ cos² 0 = 1
(b) (cos)
= sin 0
(c,d) sin(0₁ ±0₂) = sin 0₁ cos 0₂
(e,f) cos(0₁±0₂) = cos 0₁ cos 0₂
=
ρύθ
2i
+ cos(2n-1)0 =
-
cos 0₁ sin 0₂
sin 0₁ sin 02
+ sin(2n − 1)0 =
+ sin(n − 1)0:
+ cos(n − 1)0 =
-i0
and cos
sin
-
COS
(n-1)0
2
sin
sin 2n0
2 sin 0
sin² no
sin
0
-1)0 no
sin
2
2
sin
sin
2
no
2
et+e-, show that
2
Transcribed Image Text:8. Prove that (a) (b) d de cos + cos 30 + cos 50 + (b) sin + sin 30 + sin 50+ Hint: Use Euler's formula and Geometric progression. 9. Prove that (a) 1 + cos 0 + cos 20 + sin+sin 20 + 10. Using the following definitions: sin (a) sin²+ cos² 0 = 1 (b) (cos) = sin 0 (c,d) sin(0₁ ±0₂) = sin 0₁ cos 0₂ (e,f) cos(0₁±0₂) = cos 0₁ cos 0₂ = ρύθ 2i + cos(2n-1)0 = - cos 0₁ sin 0₂ sin 0₁ sin 02 + sin(2n − 1)0 = + sin(n − 1)0: + cos(n − 1)0 = -i0 and cos sin - COS (n-1)0 2 sin sin 2n0 2 sin 0 sin² no sin 0 -1)0 no sin 2 2 sin sin 2 no 2 et+e-, show that 2
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,