Corollary 11.2.4. If anxn converges uniformly to f on an interval containing 0 and x then Sto f(t) dt = Σ%-0 (anx²+¹). in=0 Problem 11.2.5. Prove Corollary 11.2.4. Corollary 11.2.4. If anxn converges uniformly to f on an interval containing 0 and x then Sto f(t) dt = Σo (an1x²+¹). ▼ Hint. Remember that Σƒn(x) = = n=0 N lim Σƒn(x). N→∞ n=0 in-context

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Corollary 11.2.4. If anxn converges uniformly to f
on an interval containing 0 and x then
So f(t) dt = 0 (0+1 ²+¹).
an
in=
Problem 11.2.5. Prove Corollary 11.2.4.
Corollary 11.2.4. If anxn converges uniformly to f
on an interval containing 0 and x then
St²o f(t) dt = Σão (971x²+¹).
an
▼ Hint.
Remember that
N
Σfn(x) = lim Σ fn(x).
N→∞
n=0
n=0
in-context
Transcribed Image Text:Corollary 11.2.4. If anxn converges uniformly to f on an interval containing 0 and x then So f(t) dt = 0 (0+1 ²+¹). an in= Problem 11.2.5. Prove Corollary 11.2.4. Corollary 11.2.4. If anxn converges uniformly to f on an interval containing 0 and x then St²o f(t) dt = Σão (971x²+¹). an ▼ Hint. Remember that N Σfn(x) = lim Σ fn(x). N→∞ n=0 n=0 in-context
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,