10.5 3.5 10.5 Let + [10 f(x) dx = 9, [." *F(x) dx = 2, and [... (a) [F(x f(x) dx = 4 7 (6f(x) — 5) dx = | - (b) S (6f(x) X f(x) dx = 3. Find the following.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Understanding Definite Integrals

Let:
\[ \int_{0}^{10.5} f(x) \, dx = 9, \]
\[ \int_{0}^{3.5} f(x) \, dx = 2, \]
and
\[ \int_{7}^{10.5} f(x) \, dx = 3. \]

Find the following:

#### (a) Evaluate \( \int_{3.5}^{7} f(x) \, dx \):

The given information informs us that:
\[ \int_{0}^{10.5} f(x) \, dx = \int_{0}^{3.5} f(x) \, dx + \int_{3.5}^{7} f(x) \, dx + \int_{7}^{10.5} f(x) \, dx. \]

Given:
\[ \int_{0}^{10.5} f(x) \, dx = 9, \]
\[ \int_{0}^{3.5} f(x) \, dx = 2, \]
and
\[ \int_{7}^{10.5} f(x) \, dx = 3. \]

We can find \( \int_{3.5}^{7} f(x) \, dx \) by rearranging the equation:
\[ 9 = 2 + \int_{3.5}^{7} f(x) \, dx + 3. \]

Solving for \( \int_{3.5}^{7} f(x) \, dx \):
\[ \int_{3.5}^{7} f(x) \, dx = 9 - 2 - 3, \]
\[ \int_{3.5}^{7} f(x) \, dx = 4. \]

Thus,
\[ \int_{3.5}^{7} f(x) \, dx = 4. \]

This value is given correctly, as indicated by the green check mark.

#### (b) Evaluate \( \int_{3.5}^{7} (6f(x) - 5) \, dx \):

We can use the linearity of the integral to separate the terms:
\[ \int_{3.5}^{7} (6f(x) - 5) \, dx = 6 \int_{3.5}^{7} f(x) \, dx - \int_{3
Transcribed Image Text:### Understanding Definite Integrals Let: \[ \int_{0}^{10.5} f(x) \, dx = 9, \] \[ \int_{0}^{3.5} f(x) \, dx = 2, \] and \[ \int_{7}^{10.5} f(x) \, dx = 3. \] Find the following: #### (a) Evaluate \( \int_{3.5}^{7} f(x) \, dx \): The given information informs us that: \[ \int_{0}^{10.5} f(x) \, dx = \int_{0}^{3.5} f(x) \, dx + \int_{3.5}^{7} f(x) \, dx + \int_{7}^{10.5} f(x) \, dx. \] Given: \[ \int_{0}^{10.5} f(x) \, dx = 9, \] \[ \int_{0}^{3.5} f(x) \, dx = 2, \] and \[ \int_{7}^{10.5} f(x) \, dx = 3. \] We can find \( \int_{3.5}^{7} f(x) \, dx \) by rearranging the equation: \[ 9 = 2 + \int_{3.5}^{7} f(x) \, dx + 3. \] Solving for \( \int_{3.5}^{7} f(x) \, dx \): \[ \int_{3.5}^{7} f(x) \, dx = 9 - 2 - 3, \] \[ \int_{3.5}^{7} f(x) \, dx = 4. \] Thus, \[ \int_{3.5}^{7} f(x) \, dx = 4. \] This value is given correctly, as indicated by the green check mark. #### (b) Evaluate \( \int_{3.5}^{7} (6f(x) - 5) \, dx \): We can use the linearity of the integral to separate the terms: \[ \int_{3.5}^{7} (6f(x) - 5) \, dx = 6 \int_{3.5}^{7} f(x) \, dx - \int_{3
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning