(Converting a Number from Binary to Decimal) The language of a computer, called machine language, is a sequence of 0s and 1s. When you press the key A on the keyboard, 01000001 is stored in the computer. Also, the collating sequence of A in the ASCII character set is 65. In fact, the binary representation of A is 01000001 and the decimal representation of A is 65. The numbering system we use is called the decimal system, or base 10 system. The numbering system that the computer uses is called the binary system, or base 2 system. The purpose of this exercise is to write a function to convert a number from base 2 to base 10. To convert a number from base 2 to base 10, we first find the weight of each bit in the binary number. The weight of each bit in the binary number is assigned from right to left. The weight of the rightmost bit is 0. The weight of the bit immediately to the left of the rightmost bit is 1, the weight of the bit immediately to the left of it is 2, and so on. Consider the binary number 1001101. The weight of each bit is as follows: weight 6 5 4 3 2 1 0 1 0 0 1 1 0 1 We use the weight of each bit to find the equivalent decimal number. For each bit, we multiply the bit by 2 to the power of its weight, and then we add all of the numbers. For the binary number 1001101, the equivalent decimal number is 1 X 2^6 + 0 X 2^5 + 0 X 2^4 + 1 X 2^3 + 1 X 2^2 + 0 X 2^1 + 1 X 2^0 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77 To write a program that converts a binary number into the equivalent decimal number, we note two things: (1) The weight of each bit in the binary number must be known, and (2) the weight is assigned from right to left. Because we do not know in advance how many bits are in the binary number, we must process the bits from right to left. After processing a bit, we can add 1 to its weight, giving the weight of the bit immediately to its left. Also, each bit must be extracted from the binary number and multiplied by 2 to the power of its weight. To extract a bit, you can use the mod operator. Write a program that uses a stack to convert a binary number into an equivalent decimal number and test your function for the following values:

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

(Converting a Number from Binary to Decimal) The language of a computer, called machine language, is a sequence of 0s and 1s.
When you press the key A on the keyboard, 01000001 is stored in the computer.
Also, the collating sequence of A in the ASCII character set is 65.

In fact, the binary representation of A is 01000001 and the decimal representation of A is 65.
The numbering system we use is called the decimal system, or base 10 system.

The numbering system that the computer uses is called the binary system, or base 2 system. The purpose of this exercise is to write a function to convert a number from base 2 to base 10.
To convert a number from base 2 to base 10, we first find the weight of each bit in the binary number.

The weight of each bit in the binary number is assigned from right to left.
The weight of the rightmost bit is 0.

The weight of the bit immediately to the left of the rightmost bit is 1, the weight of the bit immediately to the left of it is 2, and so on.
Consider the binary number 1001101.

The weight of each bit is as follows:
weight 6 5 4 3 2 1 0
1 0 0 1 1 0 1

We use the weight of each bit to find the equivalent decimal number.

For each bit, we multiply the bit by 2 to the power of its weight, and then we add all of the numbers.
For the binary number 1001101, the equivalent decimal number is

1 X 2^6 + 0 X 2^5 + 0 X 2^4 + 1 X 2^3 + 1 X 2^2 + 0 X 2^1 + 1 X 2^0
= 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

To write a program that converts a binary number into the equivalent decimal number, we note two things:
(1) The weight of each bit in the binary number must be known, and
(2) the weight is assigned from right to left.

Because we do not know in advance how many bits are in the binary number, we must process the bits from right to left.
After processing a bit, we can add 1 to its weight, giving the weight of the bit immediately to its left.

Also, each bit must be extracted from the binary number and multiplied by 2 to the power of its weight.
To extract a bit, you can use the mod operator.

Write a program that uses a stack to convert a binary number into an equivalent decimal number and test your function for the following values:
11000101, 10101010, 11111111, 10000000, 1111100000.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Literals
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education