Consider the maximally-entangled state 1 les) = (lo) 8 øo) + \ø1) ® \&1}), V2 where the orthonormal basis is defined by Cos O sin 0 lo0) = |ø0) = (Tø| cos O sin 0 Now we have a quantum operator cos X - sin x U(x) = sin X COS X Assuming 0, x E R. (i) Find |vv) = (I ®U)). (ii) Is |Þv) still an entangled state?

icon
Related questions
Question
Consider the maximally-entangled state
1
(løo) ® [0) + \Ø1) ® |Ø1)),
where the orthonormal basis is defined by
(3)
Cos O
- sin 0
sin 0
COs O
Now we have a quantum operator
COS X
– sin x
U(x) =
sin X
COS X
Assuming 0, x E R.
(i) Find |bv) = (I ® U)\b).
(ii) Is |Þv) still an entangled state?
Transcribed Image Text:Consider the maximally-entangled state 1 (løo) ® [0) + \Ø1) ® |Ø1)), where the orthonormal basis is defined by (3) Cos O - sin 0 sin 0 COs O Now we have a quantum operator COS X – sin x U(x) = sin X COS X Assuming 0, x E R. (i) Find |bv) = (I ® U)\b). (ii) Is |Þv) still an entangled state?
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Similar questions