Consider the initial value problem y′′+γy′+y=kδ(t−1),y(0)=0,y′(0)=0 where k is the magnitude of an impulse at t = 1, and γ is the damping coefficient (or resistance). a.Let γ=12γ=12. Find the value of k for which the response has a peak value of 2; call this value k1. b.Repeat part (a) for γ=14γ=14.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Consider the initial value problem

y′′+γy′+y=kδ(t−1),y(0)=0,y′(0)=0

where k is the magnitude of an impulse at t = 1, and γ is the damping coefficient (or resistance).

a.Let γ=12γ=12. Find the value of k for which the response has a peak value of 2; call this value k1.

b.Repeat part (a) for γ=14γ=14.

Expert Solution
Step 1

Given : y''+γ'+y=kδt-1     ,    y0=0   ,   y'0=0

To Find : k112

            : k214 

Step 2

y''+γ'+y=kδt-1      . . . 1

The Given ODE is Linear  , So we can use Laplace transform can be used to solve 

Ys=Lyt=0e-stytdt

Similarly first and Second derivatives transform as follows .

Ldydt=sYs-y0Ld2ydt2=s2Ys-sy0-y'0

Take the Laplace transform of both sides of ODE 

Ly''+γ γ'+y=Lkδt-1

Ly''}+γ L{ γ'}+L{y=Lkδt-1

s2Ys-sy0-y'0+γ sYs-y0+Ys=k0e-stδt-1dt

Since y0=0 and y'0=0

s2Ys+γ sYs+Ys=ke-s1

s2+γs+1Ys=ke-sYs=ke-ss2+γs+1

Step 3

Suppose that 0<γ<2

Ys=ke-ss2+γs+γ24+1-γ24      =ke-ss+γ22+4-γ24     =2k4-γ24-γ22s+γ22+4-γ24e-s

Take the inverse Laplace Transform to get y(t)

yt=2k4-γ2e-γt-12 sin 4-γ22t-1Ht-1

For Values of t>1 . the Heaviside Function is 1 

yt=2k4-γ2e-γt-12 sin 4-γ22t-1 , t>1

 

Step 4

Take the derivative and set it equal to zero to find the value of t for which yt is maximum

y't=-γk4-γ2e-γt-12 sin 4-γ22t-1+ke-γt-12 cos 4-γ22t-1=0

tan 4-γ22t-1=4-γ2γ

tmax=1+24-γ2tan-14-γ2γ

Now putting this value of t into y(t) to find the maximum value of y.

ytmax=2k4-γ2exp-γ4-γ2tan-14-γ2γ sin tan-14-γ2γ

steps

Step by step

Solved in 7 steps with 2 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,