Consider the initial value problem dy = x - y², y(0) = 1 dx (a) Use the modified Euler method with step h = 0.1 to determine the approximate value of the solution at x = 0.1. Give the answer correct to the fourth decimal place. (b) Use the fourth order Runge-Kutta method with step h = 0.5 to determine the approximate value of the solution at x = 0.5. Give the answer correct to the fourth decimal place.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Pls show full working

Consider the initial value problem
dy
%3D х — у?, у(0) %3D 1
dx
(a) Use the modified Euler method with step h = 0.1 to determine the approximate value
of the solution at x = 0.1. Give the answer correct to the fourth decimal place.
(b) Use the fourth order Runge-Kutta method with step h = 0.5 to determine the
approximate value of the solution at x = 0.5. Give the answer correct to the fourth
decimal place.
Transcribed Image Text:Consider the initial value problem dy %3D х — у?, у(0) %3D 1 dx (a) Use the modified Euler method with step h = 0.1 to determine the approximate value of the solution at x = 0.1. Give the answer correct to the fourth decimal place. (b) Use the fourth order Runge-Kutta method with step h = 0.5 to determine the approximate value of the solution at x = 0.5. Give the answer correct to the fourth decimal place.
Expert Solution
steps

Step by step

Solved in 6 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,