Consider the gravitational acceleration on the surface of the Moon and of Mars. a) What is the acceleration, in meters per square second, due to gravity on the surface of the Moon? You will need to look up the mass and radius of the Moon. b) What is the acceleration, in meters per square second, due to gravity on the surface of Mars? The mass of Mars is 6.418 × 1023 kg and its radius is 3.38 × 106 m. Given: the radius of the moon is 1,080 miles
Gravitational force
In nature, every object is attracted by every other object. This phenomenon is called gravity. The force associated with gravity is called gravitational force. The gravitational force is the weakest force that exists in nature. The gravitational force is always attractive.
Acceleration Due to Gravity
In fundamental physics, gravity or gravitational force is the universal attractive force acting between all the matters that exist or exhibit. It is the weakest known force. Therefore no internal changes in an object occurs due to this force. On the other hand, it has control over the trajectories of bodies in the solar system and in the universe due to its vast scope and universal action. The free fall of objects on Earth and the motions of celestial bodies, according to Newton, are both determined by the same force. It was Newton who put forward that the moon is held by a strong attractive force exerted by the Earth which makes it revolve in a straight line. He was sure that this force is similar to the downward force which Earth exerts on all the objects on it.
Consider the gravitational acceleration on the surface of the Moon and of Mars.
a) What is the acceleration, in meters per square second, due to gravity on the surface of the Moon? You will need to look up the mass and radius of the Moon.
b) What is the acceleration, in meters per square second, due to gravity on the surface of Mars? The mass of Mars is 6.418 × 1023 kg and its radius is 3.38 × 106 m.
Given: the radius of the moon is 1,080 miles
Trending now
This is a popular solution!
Step by step
Solved in 3 steps