Consider the function y = f(x). Below is a table of values for the function f. %3D f(x) f(x) 2.1 1.1201 1.9 -1.1201 2.01 1.0256 1.99 -1.0256 2.001 1.0015 1.999 -1.0015 2.0001 1.0002 1.9999 -1.0002 Based on this table only, what is the best estimate for the limit lim f(x)? 2 -1 1 Does not exist None of the above

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Consider the function \( y = f(x) \). Below is a table of values for the function \( f \).

\[
\begin{array}{|c|c|c|c|}
\hline
x & f(x) & x & f(x) \\
\hline
2.1 & 1.1201 & 1.9 & -1.1201 \\
2.01 & 1.0256 & 1.99 & -1.0256 \\
2.001 & 1.0015 & 1.999 & -1.0015 \\
2.0001 & 1.0002 & 1.9999 & -1.0002 \\
\hline
\end{array}
\]

Based on this table only, what is the best estimate for the limit \(\lim_{x \to 2} f(x)\)?

- \( \bigcirc \) 2
- \( \bigcirc \) -1
- \( \bigcirc \) 1
- \( \bigcirc \) Does not exist
- \( \bigcirc \) None of the above 

Explanation:
The table provides values of \( f(x) \) for \( x \) approaching 2 from both sides. As \( x \) approaches 2 from the right (e.g., 2.1, 2.01, 2.001, 2.0001), \( f(x) \) approaches 1. As \( x \) approaches 2 from the left (e.g., 1.9, 1.99, 1.999, 1.9999), \( f(x) \) approaches -1. Therefore, these values suggest different limits from the left and right, implying the limit does not exist.
Transcribed Image Text:Consider the function \( y = f(x) \). Below is a table of values for the function \( f \). \[ \begin{array}{|c|c|c|c|} \hline x & f(x) & x & f(x) \\ \hline 2.1 & 1.1201 & 1.9 & -1.1201 \\ 2.01 & 1.0256 & 1.99 & -1.0256 \\ 2.001 & 1.0015 & 1.999 & -1.0015 \\ 2.0001 & 1.0002 & 1.9999 & -1.0002 \\ \hline \end{array} \] Based on this table only, what is the best estimate for the limit \(\lim_{x \to 2} f(x)\)? - \( \bigcirc \) 2 - \( \bigcirc \) -1 - \( \bigcirc \) 1 - \( \bigcirc \) Does not exist - \( \bigcirc \) None of the above Explanation: The table provides values of \( f(x) \) for \( x \) approaching 2 from both sides. As \( x \) approaches 2 from the right (e.g., 2.1, 2.01, 2.001, 2.0001), \( f(x) \) approaches 1. As \( x \) approaches 2 from the left (e.g., 1.9, 1.99, 1.999, 1.9999), \( f(x) \) approaches -1. Therefore, these values suggest different limits from the left and right, implying the limit does not exist.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning