Consider the following. w = x cos yz, x = s², y = t², z =s - 2t (a) Find aw/as and aw/at by using the appropriate Chain Rule. aw - 2s cos (1²) - xy sin (1²) = əs Əw at Əw Əs = Əw at × (b) Find aw/as and aw/at by converting w to a function of s and t before differentiating. 2s cos (st² - 21³) - s²²sin (st² – 21³) - -2s³t sin (st² - 21³) + 6s²t sin(st² - 2³) x 2xy sin (²) - 2xtz sin (²) ×

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please help solve the problem provided in the photo below PLEASE
Consider the following.
w = x cos yz, x = s², y = t², z =s - 2t
(a) Find aw/as and aw/at by using the appropriate Chain Rule.
aw - 2s cos (1²)-xy sin (²)
=
əs
Əw
at
Əw
Əs
=
Əw
at
×
(b) Find aw/as and aw/ât by converting w to a function of s and t before differentiating.
2s cos (st² - 21³) - s²²sin(st² – 21³)
-
-2s³t sin (st² - 21³) + 6s²t sin(st² - 2³) x
2xy sin (²) - 2xtz sin (²) ×
Transcribed Image Text:Consider the following. w = x cos yz, x = s², y = t², z =s - 2t (a) Find aw/as and aw/at by using the appropriate Chain Rule. aw - 2s cos (1²)-xy sin (²) = əs Əw at Əw Əs = Əw at × (b) Find aw/as and aw/ât by converting w to a function of s and t before differentiating. 2s cos (st² - 21³) - s²²sin(st² – 21³) - -2s³t sin (st² - 21³) + 6s²t sin(st² - 2³) x 2xy sin (²) - 2xtz sin (²) ×
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,