Consider the following. lim X-0 Create a table of values for the function. (Round your answers to four decimal places.) X f(x) -0.1 lim X-0 sin(2x) X sin(2x) X Need Help? -0.01 Read It -0.001 Use the table to estimate the limit. Use a graphing utility to graph the function to confirm your result. (Round your answer to four decimal places.) 0.001 0.01 0.1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Understanding Limits in Calculus**

**Consider the following limit problem:**

\[
\lim_{{x \to 0}} \frac{{\sin(2x)}}{x}
\]

**Create a Table of Values for the Function:**

To estimate the limit, create a table of values. Round your answers to four decimal places.

| \( x \)  | \(-0.1\) | \(-0.01\) | \(-0.001\) | \(0.001\) | \(0.01\) | \(0.1\) |
|----------|----------|-----------|------------|-----------|----------|---------|
| \( f(x) \) |          |           |            |           |          |         |

**Estimation and Graphical Confirmation:**

1. Use the table to estimate the limit.
2. Use a graphing utility to graph the function and confirm your result.
3. Round your answer to four decimal places.

\[
\lim_{{x \to 0}} \frac{{\sin(2x)}}{x} \approx \_\_\_
\]

**Additional Resources:**

Need help? Click the "Read It" button for more information and guidance.
Transcribed Image Text:**Understanding Limits in Calculus** **Consider the following limit problem:** \[ \lim_{{x \to 0}} \frac{{\sin(2x)}}{x} \] **Create a Table of Values for the Function:** To estimate the limit, create a table of values. Round your answers to four decimal places. | \( x \) | \(-0.1\) | \(-0.01\) | \(-0.001\) | \(0.001\) | \(0.01\) | \(0.1\) | |----------|----------|-----------|------------|-----------|----------|---------| | \( f(x) \) | | | | | | | **Estimation and Graphical Confirmation:** 1. Use the table to estimate the limit. 2. Use a graphing utility to graph the function and confirm your result. 3. Round your answer to four decimal places. \[ \lim_{{x \to 0}} \frac{{\sin(2x)}}{x} \approx \_\_\_ \] **Additional Resources:** Need help? Click the "Read It" button for more information and guidance.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,