Consider the following vectors in R5: 5 12 7 -7 -11 Find a basis of Span (V1, V2, V3, V4, V5). For convenience, here is the above list of vectors in a form that can be copied into Python code: V1 = V2 = 10 24 14 -14 -22 Hint. Notice that Span (V1, V2, V3, V4, V5): = V3 7 6 -3 -3 0 -1 , V4= 1 13 -1 5 " Col (A) where Col (A) = [V₁ V2 V3 V4 V5]. V5 = -7 -9 [5,12,7,-7, -11], [10, 24, 14, -14, -22], [7,6,-1,1,-13], [-3, -3,0,-1,5], [-7,-9, -2,1,13] -2 1 13

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the following vectors in \( \mathbb{R}^5 \):

\[
\mathbf{v}_1 = \begin{bmatrix} 5 \\ 12 \\ 7 \\ -7 \\ -11 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 10 \\ 24 \\ 14 \\ -14 \\ -22 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 7 \\ 6 \\ -1 \\ 1 \\ -13 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} -3 \\ -3 \\ 0 \\ -1 \\ 5 \end{bmatrix}, \quad \mathbf{v}_5 = \begin{bmatrix} -7 \\ -9 \\ -2 \\ 1 \\ 13 \end{bmatrix}
\]

Find a basis of \(\text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5)\).

For convenience, here is the above list of vectors in a form that can be copied into Python code:
```
[5,12,7,-7,-11],[10,24,14,-14,-22],[7,6,-1,1,-13],[-3,-3,0,-1,5],[-7,-9,-2,1,13]
```

**Hint.** Notice that \(\text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5) = \text{Col}(A)\) where \(\text{Col}(A) = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4 \ \mathbf{v}_5]\).
Transcribed Image Text:Consider the following vectors in \( \mathbb{R}^5 \): \[ \mathbf{v}_1 = \begin{bmatrix} 5 \\ 12 \\ 7 \\ -7 \\ -11 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 10 \\ 24 \\ 14 \\ -14 \\ -22 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 7 \\ 6 \\ -1 \\ 1 \\ -13 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} -3 \\ -3 \\ 0 \\ -1 \\ 5 \end{bmatrix}, \quad \mathbf{v}_5 = \begin{bmatrix} -7 \\ -9 \\ -2 \\ 1 \\ 13 \end{bmatrix} \] Find a basis of \(\text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5)\). For convenience, here is the above list of vectors in a form that can be copied into Python code: ``` [5,12,7,-7,-11],[10,24,14,-14,-22],[7,6,-1,1,-13],[-3,-3,0,-1,5],[-7,-9,-2,1,13] ``` **Hint.** Notice that \(\text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5) = \text{Col}(A)\) where \(\text{Col}(A) = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4 \ \mathbf{v}_5]\).
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,