Consider the following system of linear equations. 4x-2y -z = 14 +2z = 26 =-3 5x 2x +y Solve the system by completing the steps below to produce a reduced row-echelon form. R₁, R₂, and R3 denote the first, second, and third rows, respectively. The arrow notation (→) stands for "replaces," where the expression on the left of the arrow replaces the expression or right. Here is the augmented matrix: Enter the missing coefficients for the row operations. (1) (2) (3) (4) R₁ R₁: (-5) R₁ + R₂ R₂: (12) R₁ + R₂ R3: R₂ → R₂: R₂ + R₁ R₁: + 4 -2 -1 5 0 2 2 1 0 R₂ + R3 R3: 1 5 2 1 0 0 1 10 -12 12 01 00 old 0 2 0 2 1 0 1 S 1 A 10 4 19112 10 13 14 26 3 2 26 -3 17 2 - 10 17 - 10 26 5 17 5 84 5 olo 29

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
### Solving a System of Linear Equations Using Row-Echelon Form

#### Consider the following system of linear equations:

1. \( 4x - 2y - z = 14 \)
2. \( 5x + 2z = 26 \)
3. \( 2x + y = -3 \)

To solve this system, we will perform a series of row operations to produce a reduced row-echelon form. We denote the rows as \( R_1, R_2, \) and \( R_3 \), representing the first, second, and third rows, respectively.

The arrow notation (\(\rightarrow\)) represents the operation of replacing the expression on the left with the expression on the right.

#### Augmented Matrix

The system of equations is represented as an augmented matrix:

\[
\begin{bmatrix}
4 & -2 & -1 & \vert & 14 \\
5 & 0 & 2 & \vert & 26 \\
2 & 1 & 0 & \vert & -3
\end{bmatrix}
\]

#### Row Operations

1. **First Operation:**
   \(( \_\_\_) \cdot R_1 \rightarrow R_1\)
   
   This operation modifies \( R_1 \) using a scalar multiplication. The result is:

   \[
   \begin{bmatrix}
   1 & -\frac{1}{2} & -\frac{1}{4} & \vert & \frac{7}{2} \\
   5 & 0 & 2 & \vert & 26 \\
   2 & 1 & 0 & \vert & -3
   \end{bmatrix}
   \]

2. **Second Operations:**
   \((-5) \cdot R_1 + R_2 \rightarrow R_2\)

   \((\_\_\_) \cdot R_1 + R_3 \rightarrow R_3\)

   Applying these operations results in:

   \[
   \begin{bmatrix}
   1 & -\frac{1}{2} & -\frac{1}{4} & \vert & \frac{7}{2} \\
   0 & 1 & \frac{13}{10} & \vert & \frac{17}{5} \\
   0
Transcribed Image Text:### Solving a System of Linear Equations Using Row-Echelon Form #### Consider the following system of linear equations: 1. \( 4x - 2y - z = 14 \) 2. \( 5x + 2z = 26 \) 3. \( 2x + y = -3 \) To solve this system, we will perform a series of row operations to produce a reduced row-echelon form. We denote the rows as \( R_1, R_2, \) and \( R_3 \), representing the first, second, and third rows, respectively. The arrow notation (\(\rightarrow\)) represents the operation of replacing the expression on the left with the expression on the right. #### Augmented Matrix The system of equations is represented as an augmented matrix: \[ \begin{bmatrix} 4 & -2 & -1 & \vert & 14 \\ 5 & 0 & 2 & \vert & 26 \\ 2 & 1 & 0 & \vert & -3 \end{bmatrix} \] #### Row Operations 1. **First Operation:** \(( \_\_\_) \cdot R_1 \rightarrow R_1\) This operation modifies \( R_1 \) using a scalar multiplication. The result is: \[ \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{4} & \vert & \frac{7}{2} \\ 5 & 0 & 2 & \vert & 26 \\ 2 & 1 & 0 & \vert & -3 \end{bmatrix} \] 2. **Second Operations:** \((-5) \cdot R_1 + R_2 \rightarrow R_2\) \((\_\_\_) \cdot R_1 + R_3 \rightarrow R_3\) Applying these operations results in: \[ \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{4} & \vert & \frac{7}{2} \\ 0 & 1 & \frac{13}{10} & \vert & \frac{17}{5} \\ 0
The image shows a sequence of operations to solve a system of linear equations using row reduction to reach row-echelon form and eventually reduced row-echelon form.

**Matrices and Operations:**

1. **Initial Matrix:**
   
   \[
   \begin{bmatrix}
   1 & -\frac{1}{2} & -\frac{1}{4} & \vline & 7 \\
   5 & \frac{13}{4} & 1 & \vline & \frac{17}{2} \\
   0 & 2 & \frac{1}{2} & \vline & -10 \\
   \end{bmatrix}
   \]

2. **Operation (2):** 
   - Perform \((-5) \cdot R_1 + R_2 \rightarrow R_2\).
   - Missing coefficient operation on \( R_1 + R_3 \rightarrow R_3 \).

   Resulting Matrix:
   
   \[
   \begin{bmatrix}
   1 & -\frac{1}{2} & -\frac{1}{4} & \vline & 7 \\
   0 & 1 & \frac{13}{10} & \vline & \frac{17}{5} \\
   0 & 2 & \frac{1}{2} & \vline & -10 \\
   \end{bmatrix}
   \]

3. **Operation (3):** 
   - \(\Box \cdot R_2 \rightarrow R_2\) (missing coefficient).

   Resulting Matrix:
   
   \[
   \begin{bmatrix}
   1 & -\frac{1}{2} & -\frac{1}{4} & \vline & 7 \\
   0 & 1 & \frac{13}{10} & \vline & \frac{17}{5} \\
   0 & 2 & \frac{1}{2} & \vline & -10 \\
   \end{bmatrix}
   \]

4. **Operation (4):** 
   - Perform \(\left(\frac{1}{2}\right) \cdot R_2 + R_1 \rightarrow R_1\).
   - \(\Box \cdot R_2 + R_
Transcribed Image Text:The image shows a sequence of operations to solve a system of linear equations using row reduction to reach row-echelon form and eventually reduced row-echelon form. **Matrices and Operations:** 1. **Initial Matrix:** \[ \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{4} & \vline & 7 \\ 5 & \frac{13}{4} & 1 & \vline & \frac{17}{2} \\ 0 & 2 & \frac{1}{2} & \vline & -10 \\ \end{bmatrix} \] 2. **Operation (2):** - Perform \((-5) \cdot R_1 + R_2 \rightarrow R_2\). - Missing coefficient operation on \( R_1 + R_3 \rightarrow R_3 \). Resulting Matrix: \[ \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{4} & \vline & 7 \\ 0 & 1 & \frac{13}{10} & \vline & \frac{17}{5} \\ 0 & 2 & \frac{1}{2} & \vline & -10 \\ \end{bmatrix} \] 3. **Operation (3):** - \(\Box \cdot R_2 \rightarrow R_2\) (missing coefficient). Resulting Matrix: \[ \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{4} & \vline & 7 \\ 0 & 1 & \frac{13}{10} & \vline & \frac{17}{5} \\ 0 & 2 & \frac{1}{2} & \vline & -10 \\ \end{bmatrix} \] 4. **Operation (4):** - Perform \(\left(\frac{1}{2}\right) \cdot R_2 + R_1 \rightarrow R_1\). - \(\Box \cdot R_2 + R_
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 15 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education