Consider the following system of linear equations. 3x +2y = 7 -2y -z = -7 3x + 4y +3z = 8 Solve the system by completing the steps below to produce a reduced row-echelon form. R₁, R₂, and R3 denote the first, second, and third rows, respectively. The arrow notation (→) stands for "replaces," where the expression on the left of the arrow replaces the expression on the right. Here is the augmented matrix: 3 2 0 0-2 -1 7 olo X 08 Español

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
### System of Linear Equations

Consider the following system of linear equations:

\[
\begin{align*}
3x + 2y & = 7 \\
-2y - z & = -7 \\
3x + 4y + 3z & = 8 \\
\end{align*}
\]

Solve the system by completing the steps below to produce a reduced row-echelon form. \( R_1 \), \( R_2 \), and \( R_3 \) denote the first, second, and third rows, respectively. The arrow notation (\(\longrightarrow\)) stands for "replaces," where the expression on the left of the arrow replaces the expression on the right.

#### Augmented Matrix

The initial augmented matrix is given as:

\[
\begin{bmatrix}
3 & 2 & 0 & \vert & 7 \\
0 & -2 & -1 & \vert & -7 \\
3 & 4 & 3 & \vert & 8 \\
\end{bmatrix}
\]

#### Row Operations

1. **Row Operation 1 \( \left[ \ \right] R_1 \longrightarrow R_1 \):**

   \[
   \begin{bmatrix}
   1 & \frac{2}{3} & 0 & \vert & \frac{7}{3} \\
   0 & -2 & -1 & \vert & -7 \\
   3 & 4 & 3 & \vert & 8 \\
   \end{bmatrix}
   \]

2. **Row Operation 2 \( \left[ \ \right] R_1 + R_3 \longrightarrow R_3 \):**

   \[
   \begin{bmatrix}
   1 & \frac{2}{3} & 0 & \vert & \frac{7}{3} \\
   0 & -2 & -1 & \vert & -7 \\
   0 & 2 & 3 & \vert & 1 \\
   \end{bmatrix}
   \]

3. **Row Operation 3 \( \left[ \ \right] R_2 \longrightarrow R_2 \):**

   \[
   \begin{bmatrix}
   1 & \frac{2}{3} & 0 & \
Transcribed Image Text:### System of Linear Equations Consider the following system of linear equations: \[ \begin{align*} 3x + 2y & = 7 \\ -2y - z & = -7 \\ 3x + 4y + 3z & = 8 \\ \end{align*} \] Solve the system by completing the steps below to produce a reduced row-echelon form. \( R_1 \), \( R_2 \), and \( R_3 \) denote the first, second, and third rows, respectively. The arrow notation (\(\longrightarrow\)) stands for "replaces," where the expression on the left of the arrow replaces the expression on the right. #### Augmented Matrix The initial augmented matrix is given as: \[ \begin{bmatrix} 3 & 2 & 0 & \vert & 7 \\ 0 & -2 & -1 & \vert & -7 \\ 3 & 4 & 3 & \vert & 8 \\ \end{bmatrix} \] #### Row Operations 1. **Row Operation 1 \( \left[ \ \right] R_1 \longrightarrow R_1 \):** \[ \begin{bmatrix} 1 & \frac{2}{3} & 0 & \vert & \frac{7}{3} \\ 0 & -2 & -1 & \vert & -7 \\ 3 & 4 & 3 & \vert & 8 \\ \end{bmatrix} \] 2. **Row Operation 2 \( \left[ \ \right] R_1 + R_3 \longrightarrow R_3 \):** \[ \begin{bmatrix} 1 & \frac{2}{3} & 0 & \vert & \frac{7}{3} \\ 0 & -2 & -1 & \vert & -7 \\ 0 & 2 & 3 & \vert & 1 \\ \end{bmatrix} \] 3. **Row Operation 3 \( \left[ \ \right] R_2 \longrightarrow R_2 \):** \[ \begin{bmatrix} 1 & \frac{2}{3} & 0 & \
The image is a step-by-step illustration of solving a system of linear equations using the Gaussian elimination method. Each step involves performing specific row operations to transform the matrix into reduced row-echelon form.

1. **Step (2)**:
    - Perform the row operation: \([ \Box ] \cdot R_1 + R_3 \rightarrow R_3\).
    - Matrix:
      \[
      \begin{bmatrix}
      2 & 0 & | & 7/3 \\
      0 & -2 & -1 & | & -7 \\
      0 & 2 & 3 & | & 1
      \end{bmatrix}
      \]

2. **Step (3)**:
    - Perform the row operation: \([ \Box ] \cdot R_2 \rightarrow R_2\).
    - Matrix:
      \[
      \begin{bmatrix}
      2 & 0 & | & 7/3 \\
      0 & 1 & 1/2 & | & 7/2 \\
      0 & 2 & 3 & | & 1
      \end{bmatrix}
      \]

3. **Step (4)**:
    - Perform the row operation: \((-2/3) \cdot R_2 + R_1 \rightarrow R_1\).
    - Perform the row operation: \([ \Box ] \cdot R_2 + R_3 \rightarrow R_3\).
    - Matrix:
      \[
      \begin{bmatrix}
      1 & 0 & -1/3 & | & 0 \\
      0 & 1 & 1/2 & | & 7/2 \\
      0 & 0 & 2 & | & -6
      \end{bmatrix}
      \]

4. **Step (5)**:
    - Perform the row operation: \([ \Box ] \cdot R_3 \rightarrow R_3\).
    - Matrix:
      \[
      \begin{bmatrix}
      1 & 0 & -1/3 & | & 0 \\
      0 & 1 & 1/2 & | & 7/2 \\
      0 & 0 & 1 & | & -3
      \end
Transcribed Image Text:The image is a step-by-step illustration of solving a system of linear equations using the Gaussian elimination method. Each step involves performing specific row operations to transform the matrix into reduced row-echelon form. 1. **Step (2)**: - Perform the row operation: \([ \Box ] \cdot R_1 + R_3 \rightarrow R_3\). - Matrix: \[ \begin{bmatrix} 2 & 0 & | & 7/3 \\ 0 & -2 & -1 & | & -7 \\ 0 & 2 & 3 & | & 1 \end{bmatrix} \] 2. **Step (3)**: - Perform the row operation: \([ \Box ] \cdot R_2 \rightarrow R_2\). - Matrix: \[ \begin{bmatrix} 2 & 0 & | & 7/3 \\ 0 & 1 & 1/2 & | & 7/2 \\ 0 & 2 & 3 & | & 1 \end{bmatrix} \] 3. **Step (4)**: - Perform the row operation: \((-2/3) \cdot R_2 + R_1 \rightarrow R_1\). - Perform the row operation: \([ \Box ] \cdot R_2 + R_3 \rightarrow R_3\). - Matrix: \[ \begin{bmatrix} 1 & 0 & -1/3 & | & 0 \\ 0 & 1 & 1/2 & | & 7/2 \\ 0 & 0 & 2 & | & -6 \end{bmatrix} \] 4. **Step (5)**: - Perform the row operation: \([ \Box ] \cdot R_3 \rightarrow R_3\). - Matrix: \[ \begin{bmatrix} 1 & 0 & -1/3 & | & 0 \\ 0 & 1 & 1/2 & | & 7/2 \\ 0 & 0 & 1 & | & -3 \end
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education