Consider the following LP model. Min Z = 3x1 - 2x2 + x3+2x4 s.t. x2 + 4x4 <= 5 3x1 + x3 + 2x4 >= 40 2x1 - x2 + 4x3 + 2x4 <= 82 x1 - 2x2 + 2x3 + 2x4 >= 10 х1, х2, х3, х4 >но Artificial standard form of the model is given below.
Consider the following LP model. Min Z = 3x1 - 2x2 + x3+2x4 s.t. x2 + 4x4 <= 5 3x1 + x3 + 2x4 >= 40 2x1 - x2 + 4x3 + 2x4 <= 82 x1 - 2x2 + 2x3 + 2x4 >= 10 х1, х2, х3, х4 >но Artificial standard form of the model is given below.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Consider the following LP model.
Min Z = 3x1 - 2x2 + x3 + 2x4
s.t.
x2
+ 4x4 <= 5
3x1
+ x3 + 2x4 >= 40
2x1 - x2 + 4x3 + 2x4 <= 82
x1 - 2x2 + 2x3 + 2x4 >= 10
X1, х2, х3, х4 >:0
Artificial standard form of the model is given below.
Min Z = 3x1 - 2x2 + x3 + 2x4 + MA2 + MA4
s.t.
x2
+ 4x4 + S1
= 5
3x1
+ x3 + 2x4
- E2
+ A2
= 40
2x1 - x2 + 4x3 + 2x4 + S3
= 82
x1 - 2x2 + 2x3 + 2x4
- E4
+ A4 = 10
x1, x2, x3, x4, S1, S3, E2, E4, A2, A4 >=0
The following Simplex Table shows the optimal solution of the above model.
BasisX1X2X3 X4
s1 S3 E2
E4
A2
A4 RHS
Min z 0 0 0
-8
-2 0 -1
0 ( (M+1) -M 30
X3 0 0 1 (28/5) (6/5) 0 (1/5) (-3/5) (-1/5) (3/5) 4
X2 0 10
4
5
S3 0 0 0 -14
-3 1
2
-2
47
X1 10 0 (-6/5) (-2/5) 0 (-2/5) (1/5) (2/5) (-1/5) 12
Answer the following questions according to the above models and the Simplex Table.
Which one is the correct CN?
Select one:
a.(-8 -2 -1 0 (-M+1) -M)
b.(2000M M)
For which values of b1 the above basis gives the optimal solution? Select the final interval for b1.
Select one:
a.b1 >= 5/3
b.b1 >= 0
c.b1 <= 35
d.0 <= b1 <= 62/3
e.5/3 <= b1 <= 62/3](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F56259600-4826-4288-873d-797000de291d%2Fb651e948-5bac-44f6-93e2-483265986d9f%2Fc4lzxu_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Consider the following LP model.
Min Z = 3x1 - 2x2 + x3 + 2x4
s.t.
x2
+ 4x4 <= 5
3x1
+ x3 + 2x4 >= 40
2x1 - x2 + 4x3 + 2x4 <= 82
x1 - 2x2 + 2x3 + 2x4 >= 10
X1, х2, х3, х4 >:0
Artificial standard form of the model is given below.
Min Z = 3x1 - 2x2 + x3 + 2x4 + MA2 + MA4
s.t.
x2
+ 4x4 + S1
= 5
3x1
+ x3 + 2x4
- E2
+ A2
= 40
2x1 - x2 + 4x3 + 2x4 + S3
= 82
x1 - 2x2 + 2x3 + 2x4
- E4
+ A4 = 10
x1, x2, x3, x4, S1, S3, E2, E4, A2, A4 >=0
The following Simplex Table shows the optimal solution of the above model.
BasisX1X2X3 X4
s1 S3 E2
E4
A2
A4 RHS
Min z 0 0 0
-8
-2 0 -1
0 ( (M+1) -M 30
X3 0 0 1 (28/5) (6/5) 0 (1/5) (-3/5) (-1/5) (3/5) 4
X2 0 10
4
5
S3 0 0 0 -14
-3 1
2
-2
47
X1 10 0 (-6/5) (-2/5) 0 (-2/5) (1/5) (2/5) (-1/5) 12
Answer the following questions according to the above models and the Simplex Table.
Which one is the correct CN?
Select one:
a.(-8 -2 -1 0 (-M+1) -M)
b.(2000M M)
For which values of b1 the above basis gives the optimal solution? Select the final interval for b1.
Select one:
a.b1 >= 5/3
b.b1 >= 0
c.b1 <= 35
d.0 <= b1 <= 62/3
e.5/3 <= b1 <= 62/3
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)