Consider the following initial value problem.a. Find the approximations to y(0.2) and y(0.4) using Euler’s methodwith time steps of Δt = 0.2, 0.1, 0.05, and 0.025.b. Using the exact solution given, compute the errors in the Euler approximations at t = 0.2 and t = 0.4.c. Which time step results in the more accurate approximation?Explain your observations.d. In general, how does halving the time step affect the error att = 0.2 and t = 0.4? y '(t) = 4 - y, y(0) = 3; y(t) = 4 - e-t

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Consider the following initial value problem.
a. Find the approximations to y(0.2) and y(0.4) using Euler’s method
with time steps of Δt = 0.2, 0.1, 0.05, and 0.025.
b. Using the exact solution given, compute the errors in the Euler approximations at t = 0.2 and t = 0.4.
c. Which time step results in the more accurate approximation?
Explain your observations.
d. In general, how does halving the time step affect the error at
t = 0.2 and t = 0.4?

y '(t) = 4 - y, y(0) = 3; y(t) = 4 - e-t

Expert Solution
Step 1

Given:

y't=4-y,  y0=3;   yt=4-e-t.

To Do:

(a) Find the approximations to y0.2  and  y0.4 using the Euler's method with time steps t=0.2, 0.1, 0.05, 0.025.

(b) Using the exact solution calculate the errors.

(c) Which time step gives more accurate approximation?

(d) In general, how does halving the time step affect the error at t=0.2 and t=0.4?

Step 2

(a)
We have,
y't=4-y,  y0=3;   yt=4-e-t.

Let ft,y=4-y.

Euler's formula is: yi+1=yi+t fti, yi.

Calculating y0.2:

Now, for t=0.2 we have,
y1=y0+t ft0, y0=3+0.2f0,3=3+0.21=3+0.2y(0.2)=3.2

For t=0.1 we have,
y1=y0+t ft0, y0=3+0.1f0,3=3+0.11=3+0.1y1=3.1

y2=y1+t ft1, y1=3.1+0.1f0.1, 3.1=3.1+0.10.9=3.1+0.09y(0.2)=3.19

For t=0.05 we have,
y1=y0+t ft0, y0=3+0.05f0,3=3+0.051=3+0.05y1=3.05

y2=y1+t ft1, y1=3.05+0.05f0.05,3.05=3.05+0.050.95=3.05+0.0475y2=3.0975

y3=y2+t ft2, y2=3.0975+0.05f0.1,3.0975=3.0975+0.050.9025=3.0975+0.0451y3=3.1426

y4=y3+t ft3, y3=3.1426+0.05f0.15, 3.1426=3.1426+0.050.8574=3.1426+0.0429y(0.2)=3.1855

For t=0.025 we have,
y1=y0+t ft0, y0=3+0.025f0,3=3+0.0251=3+0.025y1=3.025

y2=y1+t ft1, y1=3.025+0.025f0.025,3.025=3.025+0.0250.975=3.025+0.0244y2=3.0494

y3=y2+t ft2, y2=3.0494+0.025f0.05,3.0494=3.0494+0.0250.9506=3.0494+0.0238y3=3.0731

y4=y3+t ft3, y3=3.0731+0.025f0.075,3.0731=3.0731+0.0250.9269=3.0731+0.0232y4=3.0963

y5=y4+t ft4, y4=3.0963+0.025f0.1, 3.0963=3.0963+0.0250.9037=3.0963+0.0226y5=3.1189

y6=y5+t ft5, y5=3.1189+0.025f0.125, 3.1189=3.1189+0.0250.8811=3.1189+0.022y6=3.1409

y7=y6+t ft6, y6=3.1409+0.025f0.15, 3.1409=3.1409+0.0250.8591=3.1409+0.0215y7=3.1624

y8=y7+t ft7, y7=3.1624+0.025f0.175, 3.1624=3.1624+0.0250.8376=3.1624+0.0209y(0.2)=3.1833

Step 3

Now, calculating y0.4:
For t=0.2 we have,
y1=y0+t ft0, y0=3+0.2f0,3=3+0.21=3+0.2y1=3.2

y2=y1+t ft1, y1=3.2+0.2f0.2,3.2=3.2+0.20.8=3.2+0.16y(0.4)=3.36

For t=0.1 we have,
y1=y0+t ft0, y0=3+0.1f0,3=3+0.11=3+0.1y1=3.1

y2=y1+t ft1, y1=3.1+0.1f0.1, 3.1=3.1+0.10.9=3.1+0.09y2=3.19

y3=y2+t ft2, y2=3.19+0.1f0.2, 3.19=3.19+0.10.81=3.19+0.081y3=3.271

y4=y1+t ft1, y1=3.271+0.1f0.3, 3.271=3.271+0.10.729=3.271+0.0729y(0.4)=3.3439 

For t=0.05 we have,
y1=y0+t ft0, y0=3+0.05f0,3=3+0.051=3+0.05y1=3.05

y2=y1+t ft1, y1=3.05+0.05f0.05,3.05=3.05+0.050.95=3.05+0.0475y2=3.0975

y3=y2+t ft2, y2=3.0975+0.05f0.1,3.0975=3.0975+0.050.9025=3.0975+0.0451y3=3.1426

y4=y3+t ft3, y3=3.1426+0.05f0.15,3.1426=3.1426+0.050.8574=3.1426+0.0429y4=3.1855

y5=y4+t ft4, y4=3.1855+0.05f0.2, 3.1855=3.1855+0.050.8145=3.1855+0.0407y5=3.2262

y6=y5+t ft5, y5=3.2262+0.05f0.25, 3.2262=3.2262+0.050.7738=3.2262+0.0387y6=3.2649

y7=y6+t ft6, y6=3.2649+0.05f0.3, 3.2649=3.2649+0.050.7351=3.2649+0.0368y7=3.3017

y8=y7+t ft7, y7=3.3017+0.05f0.35, 3.3017=3.3017+0.050.6983=3.3017+0.0349y(0.4)=3.3366

For t=0.025 we have,
y1=y0+t ft0, y0=3+0.025f0,3=3+0.0251=3+0.025y1=3.025

y2=y1+t ft1, y1=3.025+0.025f0.025,3.025=3.025+0.0250.975=3.025+0.0244y2=3.0494

y3=y2+t ft2, y2=3.0494+0.025f0.05,3.0494=3.0494+0.0250.9506=3.0494+0.0238y3=3.0731

y4=y3+t ft3, y3=3.0731+0.025f0.075,3.0731=3.0731+0.0250.9269=3.0731+0.0232y4=3.0963

y5=y4+t ft4, y4=3.0963+0.025f0.1, 3.0963=3.0963+0.0250.9037=3.0963+0.0226y5=3.1189

y6=y5+t ft5, y5=3.1189+0.025f0.125, 3.1189=3.1189+0.0250.8811=3.1189+0.022y6=3.1409

y7=y6+t ft6, y6=3.1409+0.025f0.15, 3.1409=3.1409+0.0250.8591=3.1409+0.0215y7=3.1624

y8=y7+t ft7, y7=3.1624+0.025f0.175, 3.1624=3.1624+0.0250.8376=3.1624+0.0209y8=3.1833

y9=y8+t ft8, y8=3.1833+0.025f0.2, 3.1833=3.1833+0.0250.8167=3.1833+0.0204y9=3.2038

y10=y9+t ft9, y9=3.2038+0.025f0.225, 3.2038=3.2038+0.0250.7962=3.2038+0.0199y10=3.2237

y11=y10+t ft10, y10=3.2237+0.025f0.25, 3.2237=3.2237+0.0250.7763=3.2237+0.0194y11=3.2431

y12=y11+t ft11, y11=3.2431+0.025f0.275, 3.2431=3.2431+0.0250.7569=3.2431+0.0189y12=3.262

y13=y12+t ft12, y12=3.262+0.025f0.3, 3.262=3.262+0.0250.738=3.262+0.0184y13=3.2805

y14=y13+t ft13, y13=3.2805+0.025f0.325, 3.2805=3.2805+0.0250.7195=3.2805+0.018y14=3.2984

y15=y14+t ft14, y14=3.2984+0.025f0.35, 3.2984=3.2984+0.0250.7016=3.2984+0.0175y15=3.316

y16=y14+t ft14, y14=3.316+0.025f0.375, 3.316=3.316+0.0250.684=3.316+0.0171y(0.4)=3.3331

steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,