ces. Percentages may be rounded to two decimal places. Use the rounded values for subsequent calculations.) y = y, v(0) = 1; y(1.0) -) - (explicit solution) h = 0.1 Actual Value Absolute Error % Rel. Error 0.00 1.0000 1.0000 0.0000 0.00 0.10 27183 1.1052 0.0495 29 0.20 1.2155 1.2214 0.0059 0.48 0.30 12401 1.3499 0.0098 0.73 0.40 1.4775 1.4918 0.0120 0.85 0.50 1.6290 1.6487 0.0197 1.19 0.60 1.7960 1.8221 0.0261 0.70 1.9801 2.0138 0.0337 1.67 0.80 2.1831 2.2255 0.0424 1.91 0.90 2.4069 2.4596 0.0527 2.14 1.00 2.5937 2.7183 0.1245 4.58

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
## Euler's Method for Initial-Value Problems

Euler's method is a straightforward numerical approach used to solve initial-value problems for ordinary differential equations (ODEs). Below is an example demonstrating Euler's method with step sizes \( h = 0.1 \) and \( h = 0.05 \).

### Problem Statement

Use Euler’s method to obtain a four-decimal approximation of the indicated value. First use \( h = 0.1 \) and then use \( h = 0.05 \). Find an explicit solution for the initial-value problem and then fill in the following tables. (Round your answers to four decimal places. Percentages may be rounded to two decimal places. Use the rounded values for subsequent calculations).

\[ y' = y, \quad y(0) = 1; \quad y(1.0) \]

### Explicit Solution

\[ y(x) = e^{x} \]

### Euler's Method Table for \( h = 0.1 \)

| \( x_n \) | \( y_n \)  | Actual Value | Absolute Error | % Rel. Error |
|-----------|------------|---------------|----------------|--------------|
| 0.00      | 1.0000     | 1.0000        | 0.0000         | 0.00         |
| 0.10      | 1.1000     | 1.1052        | 0.0052         | 0.47         |
| 0.20      | 1.2100     | 1.2214        | 0.0114         | 0.93         |
| 0.30      | 1.3310     | 1.3499        | 0.0189         | 1.40         |
| 0.40      | 1.4641     | 1.4918        | 0.0277         | 1.85         |
| 0.50      | 1.6105     | 1.6487        | 0.0382         | 2.32         |
| 0.60      | 1.7716     | 1.8221        | 0.0505         | 2.77         |
| 0.70      | 1.9487     | 2.0138        |
Transcribed Image Text:## Euler's Method for Initial-Value Problems Euler's method is a straightforward numerical approach used to solve initial-value problems for ordinary differential equations (ODEs). Below is an example demonstrating Euler's method with step sizes \( h = 0.1 \) and \( h = 0.05 \). ### Problem Statement Use Euler’s method to obtain a four-decimal approximation of the indicated value. First use \( h = 0.1 \) and then use \( h = 0.05 \). Find an explicit solution for the initial-value problem and then fill in the following tables. (Round your answers to four decimal places. Percentages may be rounded to two decimal places. Use the rounded values for subsequent calculations). \[ y' = y, \quad y(0) = 1; \quad y(1.0) \] ### Explicit Solution \[ y(x) = e^{x} \] ### Euler's Method Table for \( h = 0.1 \) | \( x_n \) | \( y_n \) | Actual Value | Absolute Error | % Rel. Error | |-----------|------------|---------------|----------------|--------------| | 0.00 | 1.0000 | 1.0000 | 0.0000 | 0.00 | | 0.10 | 1.1000 | 1.1052 | 0.0052 | 0.47 | | 0.20 | 1.2100 | 1.2214 | 0.0114 | 0.93 | | 0.30 | 1.3310 | 1.3499 | 0.0189 | 1.40 | | 0.40 | 1.4641 | 1.4918 | 0.0277 | 1.85 | | 0.50 | 1.6105 | 1.6487 | 0.0382 | 2.32 | | 0.60 | 1.7716 | 1.8221 | 0.0505 | 2.77 | | 0.70 | 1.9487 | 2.0138 |
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,