Consider the following incomplete Newton's forward difference table. f(x) A®fi A) fi A® fi A®fi i 4 -3 A D 1 1 3 E 3 4 a – 4 C 4 a 76— а 4 76 i. Find the value of A, B, C, D, and E in terms of a. ii. Use part (i) to show that a = 25. iii. Use Newton's forward difference formula to estimate f(1.5). 1. 3.
Consider the following incomplete Newton's forward difference table. f(x) A®fi A) fi A® fi A®fi i 4 -3 A D 1 1 3 E 3 4 a – 4 C 4 a 76— а 4 76 i. Find the value of A, B, C, D, and E in terms of a. ii. Use part (i) to show that a = 25. iii. Use Newton's forward difference formula to estimate f(1.5). 1. 3.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![a) Consider the following incomplete Newton's forward difference table.
i
f(x) A@f A( fi A®fi A® fi
1
4
-3
A
1
1
E
3
4
a – 4
C
4
76 – a
a
4
76
i. Find the value of A, B, C, D, and E in terms of a.
ii. Use part (i) to show that a = 25.
iii. Use Newton's forward difference formula to estimate f(1.5).
b) Approximate the integral
r2 tan
-1
dx,
VI+x²
by using
Simpson's rule with 10 sub-intervals in between 0 and 27.
3
c) Evaluate the integral
e" (x + 1)
dx,
V1- x2
using 3-points Gaussian quadrature.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4ef59f61-f49e-44ad-90f9-b7b1393f2434%2F0b83aa0d-e33c-4c47-a566-e67d187b8a74%2F5w99s1_processed.jpeg&w=3840&q=75)
Transcribed Image Text:a) Consider the following incomplete Newton's forward difference table.
i
f(x) A@f A( fi A®fi A® fi
1
4
-3
A
1
1
E
3
4
a – 4
C
4
76 – a
a
4
76
i. Find the value of A, B, C, D, and E in terms of a.
ii. Use part (i) to show that a = 25.
iii. Use Newton's forward difference formula to estimate f(1.5).
b) Approximate the integral
r2 tan
-1
dx,
VI+x²
by using
Simpson's rule with 10 sub-intervals in between 0 and 27.
3
c) Evaluate the integral
e" (x + 1)
dx,
V1- x2
using 3-points Gaussian quadrature.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)