(B) Assume that π(a) = { and that Z ~āt. 1, 1 for a = 0 for a 1, Derive the degree distribution P(k) of the network for large times, i.e. t>1, in the mean-field approximation. Consider the following growing network model in which each node i is assigned an attractiveness a¿ € N+ drawn from a distribution π(a). Let N(t) denote the total number of nodes at time t. At time t = 1 the network is formed by two nodes joined by a link. - At every time step a new node joins the network. Every new node has initially a single link that connects it to the rest of the network. - At every time step t the link of the new node is attached to an existing node of the network chosen with probability II; given by where Z = Ili = ai Z' Σ aj. j=1,...,N(t−1)
(B) Assume that π(a) = { and that Z ~āt. 1, 1 for a = 0 for a 1, Derive the degree distribution P(k) of the network for large times, i.e. t>1, in the mean-field approximation. Consider the following growing network model in which each node i is assigned an attractiveness a¿ € N+ drawn from a distribution π(a). Let N(t) denote the total number of nodes at time t. At time t = 1 the network is formed by two nodes joined by a link. - At every time step a new node joins the network. Every new node has initially a single link that connects it to the rest of the network. - At every time step t the link of the new node is attached to an existing node of the network chosen with probability II; given by where Z = Ili = ai Z' Σ aj. j=1,...,N(t−1)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Find the mean-field solution of the model by considering the following
![(B) Assume that
π(a) = {
and that Z ~āt.
1,
1 for a =
0 for a 1,
Derive the degree distribution P(k) of the network for large times, i.e.
t>1, in the mean-field approximation.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F08f364a7-58c9-40cd-a04d-83636aa816ab%2F0998e107-d7da-4f43-ac3c-da8b84919ab1%2F2je69v_processed.jpeg&w=3840&q=75)
Transcribed Image Text:(B) Assume that
π(a) = {
and that Z ~āt.
1,
1 for a =
0 for a 1,
Derive the degree distribution P(k) of the network for large times, i.e.
t>1, in the mean-field approximation.
![Consider the following growing network model in which each node i is
assigned an attractiveness a¿ € N+ drawn from a distribution π(a).
Let N(t) denote the total number of nodes at time t.
At time t = 1 the network is formed by two nodes joined by a link.
-
At every time step a new node joins the network. Every new node has
initially a single link that connects it to the rest of the network.
- At every time step t the link of the new node is attached to an existing
node of the network chosen with probability II; given by
where
Z
=
Ili
=
ai
Z'
Σ aj.
j=1,...,N(t−1)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F08f364a7-58c9-40cd-a04d-83636aa816ab%2F0998e107-d7da-4f43-ac3c-da8b84919ab1%2Fttevavj_processed.png&w=3840&q=75)
Transcribed Image Text:Consider the following growing network model in which each node i is
assigned an attractiveness a¿ € N+ drawn from a distribution π(a).
Let N(t) denote the total number of nodes at time t.
At time t = 1 the network is formed by two nodes joined by a link.
-
At every time step a new node joins the network. Every new node has
initially a single link that connects it to the rest of the network.
- At every time step t the link of the new node is attached to an existing
node of the network chosen with probability II; given by
where
Z
=
Ili
=
ai
Z'
Σ aj.
j=1,...,N(t−1)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 1 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)