Consider the following function. f(x) = x/7, a = 1, n = 3, 0.8 ≤ x ≤ 1.2 (a) Approximate f by a Taylor polynomial with degree n at the number a. T3(x) = (b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x) = T(x) when x lies in the given interval. (Round your answer to eight decimal places.) |R₂(x)| ≤ (c) Check your result in part (b) by graphing IR,(x). Enter a number. y -5.x 10-6 -0.000010 -0.000015 -0.000020 -0.000025 -0.000030 O-0.000035 y x -5.x 10-6 -0.000010 -0.000015 -0.000020 -0.000025 -0.000030 O-0.000035 0.9 0.9 1.0 1.1 1.1 1.2 1.2 X Ⓡ 0.000035 0.000030 0.000025 0.000020 0.000015 0.000010 5.x 10-6 0.9 1.0 1.1 1.2 y 0.000035 0.000030 0.000025 0.000020 0.000015 0.000010 5.x 10-6 0.9 1.0 1.1 1.2 X Q

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

This is only one question with multiple parts, I asked this question on here but the answer was incorrect.

Consider the following function.
f(x) = x6/7, a = 1, n = 3, 0.8 ≤ x ≤ 1.2
(a) Approximate f by a Taylor polynomial with degree n at the number a.
T3(x) =
(b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x) ≈ T₁(x) when x lies in the given interval. (Round your answer to eight decimal places.)
|R3(x)| ≤
(c) Check your result in part (b) by graphing IR,(X)I.
Enter a number.
y
-5.x 10-6
-0.000010
-0.000015
-0.000020
-0.000025
-0.000030
O-0.000035
-5.x 10
y
-6
-0.000010
-0.000015
-0.000020
-0.000025
-0.000030
-0.000035
X
0.9
0.9
1.0
1.1
1.1
1.2
X
X
1.2
y
0.000035
0.000030
0.000025
0.000020
0.000015
0.000010
5.x 107
0.9
1.0
1.1
1.2
X
y
L
0.9
1.0
0.000035
0.000030
0.000025
0.000020
0.000015
0.000010
5.x 10
1.1
1.2
X
Transcribed Image Text:Consider the following function. f(x) = x6/7, a = 1, n = 3, 0.8 ≤ x ≤ 1.2 (a) Approximate f by a Taylor polynomial with degree n at the number a. T3(x) = (b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x) ≈ T₁(x) when x lies in the given interval. (Round your answer to eight decimal places.) |R3(x)| ≤ (c) Check your result in part (b) by graphing IR,(X)I. Enter a number. y -5.x 10-6 -0.000010 -0.000015 -0.000020 -0.000025 -0.000030 O-0.000035 -5.x 10 y -6 -0.000010 -0.000015 -0.000020 -0.000025 -0.000030 -0.000035 X 0.9 0.9 1.0 1.1 1.1 1.2 X X 1.2 y 0.000035 0.000030 0.000025 0.000020 0.000015 0.000010 5.x 107 0.9 1.0 1.1 1.2 X y L 0.9 1.0 0.000035 0.000030 0.000025 0.000020 0.000015 0.000010 5.x 10 1.1 1.2 X
Expert Solution
steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,