Consider the following function. f(x) = x¹/3, a = 1, n = 3, 0.8 ≤ x ≤ 1.2 (a) Approximate f by a Taylor polynomial with degree n at the number a. T3(x) = (b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x)= T(x) when x lies in the given interval. (Round your answer to eight decimal places.) |R3(x)| ≤ (c) Check your result in part (b) by graphing IR(X)I. y 0.00012 0.00010 0.00008 0.00006 0.00004 0.00002 y -0.00002 -0.00004 -0.00006 -0.00008 -0.00010 -0.00012 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 X X y 0.00012 0.00010 0.00008 0.00006 0.00004 0.00002 0.9 -0.00002 -0.00004 -0.00006 -0.00008 -0.00010 -0.00012 1.0 1.1 0.9 M 1.1 1.2 1.2 X X
Consider the following function. f(x) = x¹/3, a = 1, n = 3, 0.8 ≤ x ≤ 1.2 (a) Approximate f by a Taylor polynomial with degree n at the number a. T3(x) = (b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x)= T(x) when x lies in the given interval. (Round your answer to eight decimal places.) |R3(x)| ≤ (c) Check your result in part (b) by graphing IR(X)I. y 0.00012 0.00010 0.00008 0.00006 0.00004 0.00002 y -0.00002 -0.00004 -0.00006 -0.00008 -0.00010 -0.00012 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 X X y 0.00012 0.00010 0.00008 0.00006 0.00004 0.00002 0.9 -0.00002 -0.00004 -0.00006 -0.00008 -0.00010 -0.00012 1.0 1.1 0.9 M 1.1 1.2 1.2 X X
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 18 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,