Consider the following differential equation and initial value. y' = 2x - 3y + 1, y(1) = 6; y(1.2) Use Euler's method to obtain a four-decimal approximation of the indicated value. Carry out the recursion of (3) in Section 2.6 First, use increment h = 0.1 1.1 Yn + 1 = Yn + hf(xnr Yn) 1.05 1.15 y(1) y(1.2) y(1) y(1.1) 5.99 Then, use increment h = 0.05. (Round your answers to four decimal places.) y(1.2) 5.87 5.9975 5.9425 5.885 6 5.875 (3) 6 X X X X X
Consider the following differential equation and initial value. y' = 2x - 3y + 1, y(1) = 6; y(1.2) Use Euler's method to obtain a four-decimal approximation of the indicated value. Carry out the recursion of (3) in Section 2.6 First, use increment h = 0.1 1.1 Yn + 1 = Yn + hf(xnr Yn) 1.05 1.15 y(1) y(1.2) y(1) y(1.1) 5.99 Then, use increment h = 0.05. (Round your answers to four decimal places.) y(1.2) 5.87 5.9975 5.9425 5.885 6 5.875 (3) 6 X X X X X
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Consider the following differential equation and initial value.
y' = 2x - 3y + 1, y(1) = 6; y(1.2)
Use Euler's method to obtain a four-decimal approximation of the indicated value. Carry out the recursion of (3) in Section 2.6
First, use increment h = 0.1
1.1
Yn + 1 = Yn + hf(xnr Yn)
1.05
1.15
y(1)
y(1.2)
y(1)
y(1.1)
5.99
Then, use increment h = 0.05. (Round your answers to four decimal places.)
y(1.2)
5.87
5.9975
5.9425
5.885
6
5.875
(3)
6
X
X
X
X
X](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb5386f0c-0c7d-4f0c-9c77-b0195c82b8c2%2Fd6cde2b9-55e1-42c2-b8c6-61ab43cfb421%2F4nfxnid_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Consider the following differential equation and initial value.
y' = 2x - 3y + 1, y(1) = 6; y(1.2)
Use Euler's method to obtain a four-decimal approximation of the indicated value. Carry out the recursion of (3) in Section 2.6
First, use increment h = 0.1
1.1
Yn + 1 = Yn + hf(xnr Yn)
1.05
1.15
y(1)
y(1.2)
y(1)
y(1.1)
5.99
Then, use increment h = 0.05. (Round your answers to four decimal places.)
y(1.2)
5.87
5.9975
5.9425
5.885
6
5.875
(3)
6
X
X
X
X
X
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)