Consider the following differential equation and initial value. y' = 2x - 3y + 1, y(1) = 8; y(1.2) Use Euler's method to obtain a four-decimal approximation of the indicated value. Carry out the recursion of (3) in Section 2.6 Yn + 1 = Yn + hf(xn₁ Yn) First, use increment h = 0.1 1.1 x(1 y(1) x(1 y(1.2) y(1) Then, use increment h = 0.05. (Round your answers to four decimal places.) y(1.1) 5.9 y(1.2) 4.45 8 8 (3)
Consider the following differential equation and initial value. y' = 2x - 3y + 1, y(1) = 8; y(1.2) Use Euler's method to obtain a four-decimal approximation of the indicated value. Carry out the recursion of (3) in Section 2.6 Yn + 1 = Yn + hf(xn₁ Yn) First, use increment h = 0.1 1.1 x(1 y(1) x(1 y(1.2) y(1) Then, use increment h = 0.05. (Round your answers to four decimal places.) y(1.1) 5.9 y(1.2) 4.45 8 8 (3)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Consider the following differential equation and initial value.
y' = 2x - 3y + 1, y(1) = 8; y(1.2)
Use Euler's method to obtain a four-decimal approximation of the indicated value. Carry out the recursion of (3) in Section 2.6
First, use increment h = 0.1
x(
Yn + 1 = Yn + hf(xn¹ Yn)
1.1
x(
y(1)
y(1.2)
y(1)
Then, use increment h = 0.05. (Round your answers to four decimal places.)
y(1.1)
5.9
y(1.2)
4.45
8
8
(3)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F76aaab3c-5a4a-4ff8-814d-d2e8a1f30217%2Fe494f66e-5c78-4615-b098-08305c2dd2e3%2Fr300moj_processed.png&w=3840&q=75)
Transcribed Image Text:Consider the following differential equation and initial value.
y' = 2x - 3y + 1, y(1) = 8; y(1.2)
Use Euler's method to obtain a four-decimal approximation of the indicated value. Carry out the recursion of (3) in Section 2.6
First, use increment h = 0.1
x(
Yn + 1 = Yn + hf(xn¹ Yn)
1.1
x(
y(1)
y(1.2)
y(1)
Then, use increment h = 0.05. (Round your answers to four decimal places.)
y(1.1)
5.9
y(1.2)
4.45
8
8
(3)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)