Consider the following algorithm for the maximum cut problem, based on the technique of local search. Given a partition of V into sets, the basic step of the algorithm, called flip, is that of moving a vertex from one side of the partition to the other. The following algorithm finds a locally optimal solution under the flip operation, i.e., a solution which cannot be improved by a single flip. The algorithm starts with an arbitrary partition of V. While there is a vertex such that flipping it increases the size of the cut, the algorithm flips such a vertex. (Observe that a vertex qualifies for a flip if it has more neighbors in its own partition than in the other side.) The algorithm terminates when no vertex qualifies for a flip. Show that this algorithm terminates in polynomial time, and achieves an approximation guarantee of 1/2.
Consider the following
The algorithm starts with an arbitrary partition of V. While there is a vertex such that flipping it increases the size of the cut, the algorithm flips such a vertex. (Observe that a vertex qualifies for a flip if it has more neighbors in its own partition than in the other side.) The algorithm terminates when no vertex qualifies for a flip. Show that this algorithm terminates in polynomial time, and achieves an approximation guarantee of 1/2.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 5 images