Consider the equation f (x) = 4e-*sinx – 1 = 0, a) Please justify if the bisection method can be used to determine the roots in the intervals [0, 1] nd [1, 2] respectively. If so, how many iterations are needed to satisfy the error bound of 10-6; b) Compute 2 iterations of the Secant method including the estimated error with x, = 0,x1 = 1. :) To solve the given problem, a Matlab code is generated. Please specify the method mplemented and the output for n=1.
Consider the equation f (x) = 4e-*sinx – 1 = 0, a) Please justify if the bisection method can be used to determine the roots in the intervals [0, 1] nd [1, 2] respectively. If so, how many iterations are needed to satisfy the error bound of 10-6; b) Compute 2 iterations of the Secant method including the estimated error with x, = 0,x1 = 1. :) To solve the given problem, a Matlab code is generated. Please specify the method mplemented and the output for n=1.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![3.
Consider the equation f (x) = 4e-*sinx – 1 = 0,
(a) Please justify if the bisection method can be used to determine the roots in the intervals [0, 1]
and [1, 2] respectively. If so, how many iterations are needed to satisfy the error bound of 106;
(b) Compute 2 iterations of the Secant method including the estimated error with x, = 0,x1 = 1.
%3|
(c) To solve the given problem, a Matlab code is generated. Please specify the method
implemented and the output for n=1.
clear all
syms x
f(x)=4*sin (x) *exp(-1*x)-1;
df (x) =diff (f (x));
x0=0;
et=10^-6;
nmax=20;
es=1;
n=0;
while es>et && n<nmax
x1=x0-eval (f(x0))/eva1(df (x0));
es=x1-x0;
х0-х1;
n=n+1;
end
disp('Root:')
disp (x1)
disp ('Number of the iterations')
disp (n)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F72e168db-dd32-4cd0-b85a-173ecfa9ca4f%2F3fc3d6cf-5d03-424c-b281-40451333d0de%2Fvno7e9m_processed.jpeg&w=3840&q=75)
Transcribed Image Text:3.
Consider the equation f (x) = 4e-*sinx – 1 = 0,
(a) Please justify if the bisection method can be used to determine the roots in the intervals [0, 1]
and [1, 2] respectively. If so, how many iterations are needed to satisfy the error bound of 106;
(b) Compute 2 iterations of the Secant method including the estimated error with x, = 0,x1 = 1.
%3|
(c) To solve the given problem, a Matlab code is generated. Please specify the method
implemented and the output for n=1.
clear all
syms x
f(x)=4*sin (x) *exp(-1*x)-1;
df (x) =diff (f (x));
x0=0;
et=10^-6;
nmax=20;
es=1;
n=0;
while es>et && n<nmax
x1=x0-eval (f(x0))/eva1(df (x0));
es=x1-x0;
х0-х1;
n=n+1;
end
disp('Root:')
disp (x1)
disp ('Number of the iterations')
disp (n)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)