Consider the data. 3 12 6 20 14 Y, 65 40 60 10 20 The estimated regression equation for these data is ý = 77.5 - 3.5x. (a) Compute SE, SST, and SSR using equations SSE = E(y, - ý)?, SST = E(y, - y)?, and SSR = E(ŷ, - y)?. SSE = SST = SSR = (b) Compute the coefficient of determination 2. (Round your answer to three decimal places.) 12 = Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it is at least 0.55.) O The least squares line provided a good fit as a large proportion of the variability in y has been explained by the least squares line. O The least squares line did not provide a good fit as a large proportion of the variability in y has been explained by the least squares line. O The least squares line provided a good fit as a small proportion of the variability in y has been explained by the least squares line. O The least squares line did not provide a good fit as a small proportion of the variability in y has been explained by the least squares line. (c) Compute the sample correlation coefficient. (Round your answer to three decimal places.)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question
Consider the data.
12
20
14
65
40
60
10
20
The estimated regression equation for these data is ŷ = 77.5 - 3.5x.
(a) Compute SSE, SST, and SSR using equations SSE = E(y, - ý,)2, sST = E(y, - y)?, and SSR = E(9, - v)?.
SSE =
SST =
SSR =
(b) Compute the coefficient of determination 2. (Round your answer to three decimal places.)
Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it is at least 0.55.)
O The least squares line provided a good fit as a large proportion of the variability in y has been explained by the least squares line.
O The least squares line did not provide a good fit as a large proportion of the variability in y has been explained by the least squares line.
O The least squares line provided a good fit as a small proportion of the variability in y has been explained by the least squares line.
O The least squares line did not provide a good fit as a small proportion of the variability in y has been explained by the least squares line.
(c) Compute the sample correlation coefficient. (Round your answer to three decimal places.)
Transcribed Image Text:Consider the data. 12 20 14 65 40 60 10 20 The estimated regression equation for these data is ŷ = 77.5 - 3.5x. (a) Compute SSE, SST, and SSR using equations SSE = E(y, - ý,)2, sST = E(y, - y)?, and SSR = E(9, - v)?. SSE = SST = SSR = (b) Compute the coefficient of determination 2. (Round your answer to three decimal places.) Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it is at least 0.55.) O The least squares line provided a good fit as a large proportion of the variability in y has been explained by the least squares line. O The least squares line did not provide a good fit as a large proportion of the variability in y has been explained by the least squares line. O The least squares line provided a good fit as a small proportion of the variability in y has been explained by the least squares line. O The least squares line did not provide a good fit as a small proportion of the variability in y has been explained by the least squares line. (c) Compute the sample correlation coefficient. (Round your answer to three decimal places.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Correlation, Regression, and Association
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman