Consider the data. xi 3 12 6 20 14 yi 65 40 60 10 20 The estimated regression equation for these data is ŷ = 77.5 − 3.5x. (a) Compute SSE, SST, and SSR using equations SSE = Σ(yi − ŷi)2, SST = Σ(yi − y)2, and SSR = Σ(ŷi − y)2. SSE = SST = SSR = (b) Compute the coefficient of determination r2. (Round your answer to three decimal places.) r2 = Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it is at least 0.55.) The least squares line provided a good fit as a small proportion of the variability in y has been explained by the least squares line. The least squares line provided a good fit as a large proportion of the variability in y has been explained by the least squares line.     The least squares line did not provide a good fit as a small proportion of the variability in y has been explained by the least squares line. The least squares line did not provide a good fit as a large proportion of the variability in y has been explained by the least squares line. (c) Compute the sample correlation coefficient. (Round your answer to three decimal places.)

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
icon
Concept explainers
Question
Consider the data.
xi
3 12 6 20 14
yi
65 40 60 10 20
The estimated regression equation for these data is
ŷ = 77.5 − 3.5x.
(a)
Compute SSE, SST, and SSR using equations
SSE = Σ(yi − ŷi)2,
SST = Σ(yi − y)2,
and
SSR = Σ(ŷi − y)2.
SSE = SST = SSR =
(b)
Compute the coefficient of determination
r2.
(Round your answer to three decimal places.)
r2
=
Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it is at least 0.55.)
The least squares line provided a good fit as a small proportion of the variability in y has been explained by the least squares line. The least squares line provided a good fit as a large proportion of the variability in y has been explained by the least squares line.     The least squares line did not provide a good fit as a small proportion of the variability in y has been explained by the least squares line. The least squares line did not provide a good fit as a large proportion of the variability in y has been explained by the least squares line.
(c)
Compute the sample correlation coefficient. (Round your answer to three decimal places.)
 
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Correlation, Regression, and Association
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON