Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type. 5.9 7.2 7.3 6.3 8.1 6.8 7.0 7.2 6.8 6.5 7.0 6.3 7.9 9.0 8.4 8.7 7.8 9.7 7.4 7.7 9.7 8.1 7.7 11.6 11.3 11.8 10.7 The data below give accompanying strength observations for cylinders. 6.7 5.8 7.8 7.1 7.2 9.2 6.6 8.3 7.0 8.1 7.0 8.1 7.4 8.5 8.9 9.8 9.7 14.1 12.6 11.4 Prior to obtaining data, denote the beam strengths by X₁X and the cylinder strengths by Y. Y Suppose that the X's constitute a random sample from a distribution with mean and standard deviation and that the Y's form a random sample (independent of the X's) from another distribution with mean and standard deviation d (a) Use rules of expected value to show that X-F is an unbiased estimator of ₂-2- E(X)=√E(X)=E(V)-#₁ - #2 • ECR-5)- 800) - 80-1₂-₂ 0-5-0-0. 0 € - ³) = ² = 4₂-₂ EUX-(C)- () -- O ○ £₁² - ³) - (EU) - ²(ñ)² = P₁-P2 Calculate the estimate for the given data. (Round your answer to three decimal places.) (b) Use rules of variance to obtain an expression for the variance and standard deviation (standard error) of the estimator in part (a). vox-5-v+v -07+07 8-9-√VX-5 "1 Compute the estimated standard error. (Round your answer to three decimal places.) (c) Calculate a point estimate of the ratio d/d of the two standard deviations. (Round your answer to three decimal places.) (d) Suppose a single beam and a single cylinder are randomly selected. Calculate a point estimate of the variance of the difference X-Y between beam strength and cylinder strength. (Round your answer to two decimal places.) MP₂²
Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type. 5.9 7.2 7.3 6.3 8.1 6.8 7.0 7.2 6.8 6.5 7.0 6.3 7.9 9.0 8.4 8.7 7.8 9.7 7.4 7.7 9.7 8.1 7.7 11.6 11.3 11.8 10.7 The data below give accompanying strength observations for cylinders. 6.7 5.8 7.8 7.1 7.2 9.2 6.6 8.3 7.0 8.1 7.0 8.1 7.4 8.5 8.9 9.8 9.7 14.1 12.6 11.4 Prior to obtaining data, denote the beam strengths by X₁X and the cylinder strengths by Y. Y Suppose that the X's constitute a random sample from a distribution with mean and standard deviation and that the Y's form a random sample (independent of the X's) from another distribution with mean and standard deviation d (a) Use rules of expected value to show that X-F is an unbiased estimator of ₂-2- E(X)=√E(X)=E(V)-#₁ - #2 • ECR-5)- 800) - 80-1₂-₂ 0-5-0-0. 0 € - ³) = ² = 4₂-₂ EUX-(C)- () -- O ○ £₁² - ³) - (EU) - ²(ñ)² = P₁-P2 Calculate the estimate for the given data. (Round your answer to three decimal places.) (b) Use rules of variance to obtain an expression for the variance and standard deviation (standard error) of the estimator in part (a). vox-5-v+v -07+07 8-9-√VX-5 "1 Compute the estimated standard error. (Round your answer to three decimal places.) (c) Calculate a point estimate of the ratio d/d of the two standard deviations. (Round your answer to three decimal places.) (d) Suppose a single beam and a single cylinder are randomly selected. Calculate a point estimate of the variance of the difference X-Y between beam strength and cylinder strength. (Round your answer to two decimal places.) MP₂²
Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter7: Analytic Trigonometry
Section7.6: The Inverse Trigonometric Functions
Problem 92E
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage