Consider a very simple symmetric block encryption algorithm in which 32-bits blocks of plaintext are encrypted using a 64-bit key. Encryption is defined as C = (PK₁) K₁ where C = ciphertext, K = secret key, Ko = leftmost 64 bits of K, K₁ = rightmost 64 bits of K,+ = bitwise exclusive OR, and is addition mod 264. a. Show the decryption equation. That is, show the equation for P as a function of C, Ko, and K₁. b. Suppose and adversary has access to two sets of plaintexts and their correspond- ing ciphertexts and wishes to determine K. We have the two equations: C = (PK) K₁; C = (PK) K₁ First, derive an equation in one unknown (e.g., Ko). Is it possible to proceed fur- ther to solve for Ko?

Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
icon
Related questions
Question
Consider a very simple symmetric block encryption algorithm in which 32-bits blocks
of plaintext are encrypted using a 64-bit key. Encryption is defined as
C = (PK₁) K₁
where C = ciphertext, K = secret key, Ko = leftmost 64 bits of K, K₁ = rightmost
64 bits of K,+ = bitwise exclusive OR, and is addition mod 264.
a. Show the decryption equation. That is, show the equation for P as a function of C,
Ko, and K₁.
b. Suppose and adversary has access to two sets of plaintexts and their correspond-
ing ciphertexts and wishes to determine K. We have the two equations:
C = (PK) K₁; C = (PK) K₁
First, derive an equation in one unknown (e.g., Ko). Is it possible to proceed fur-
ther to solve for Ko?
Transcribed Image Text:Consider a very simple symmetric block encryption algorithm in which 32-bits blocks of plaintext are encrypted using a 64-bit key. Encryption is defined as C = (PK₁) K₁ where C = ciphertext, K = secret key, Ko = leftmost 64 bits of K, K₁ = rightmost 64 bits of K,+ = bitwise exclusive OR, and is addition mod 264. a. Show the decryption equation. That is, show the equation for P as a function of C, Ko, and K₁. b. Suppose and adversary has access to two sets of plaintexts and their correspond- ing ciphertexts and wishes to determine K. We have the two equations: C = (PK) K₁; C = (PK) K₁ First, derive an equation in one unknown (e.g., Ko). Is it possible to proceed fur- ther to solve for Ko?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY