Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500C and the low-pressure turbine at 1 MPa and 500C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pump is 95 percent. (a) Determine the quality (or temperature, if superheated) of the steam at the turbine exit, (b) Determine the thermal efficiency of the cycle, (c) Determine the mass flow rate of the steam, (d) Show the cycle on a T-s diagram with respect to the vapor dome and specifying T and s in all principal points of the cycle.
Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500C and the low-pressure turbine at 1 MPa and 500C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pump is 95 percent.
(a) Determine the quality (or temperature, if superheated) of the steam at the turbine exit,
(b) Determine the thermal efficiency of the cycle,
(c) Determine the mass flow rate of the steam,
(d) Show the cycle on a T-s diagram with respect to the vapor dome and specifying T and s in all principal points of the cycle.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images