Consider a random walk on {0, ..., k}, which moves left and right with respec- tive probabilities q and p. If the walk is at 0 it transitions to 1 on the next step. If the walk is at k it transitions to k – 1 on the next step. This is called random walk with reflecting boundaries. Assume that k = 3, q = 1/4, p = 3/4, and the initial distribution is uniform. For the following, use technology if needed. 1p. (a) Exhibit the transition matrix.
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images