Consider a person sitting nude sun is absorbed by the person a the individual's skin temperatu (Assume this same area for sun

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

Loss and gain

Give step-by-step calculation and explanation
Consider a person sitting nude on a beach in Florida. On a sunny day, visible radiation energy from the
sun is absorbed by the person at a rate of 30 kcal/h or 34.9 W. The air temperature is a warm 30 °C and
the individual’s skin temperature is 32 °C. The effective body surface exposed to the sun is 0.9 m².
(Assume this same area for sun absorption, radiative transfer, and convective loss. Is this a good
assumption?)
a. Find the net energy gain or loss from thermal radiation each hour. (Assume thermal radiative
gain and loss according to the equation 6.51 in Herman and an emissivity of 1.) Answeer a 21kcal/hr
or 2YD
-(4).
Eguadion
(6.51)
- (40 Tin)Eskin Askin (Tskin – Troom)
dt
= (4 x 5.67 x 10¬8 w/m²–K*
x (307 K)³)€skin Aşkin (Tskin – Troom) -
(6.52)
b. If there is a 4 m/s breeze, find the energy lost by convection each hour. (Use Eq. 6.61 with eq.
6.63.) Àns
48 kcal /hr or 24W
1
Equation
h.(Tskin – Tair),
(6.61)
A
dt
he
10.45 – w + 10w0.5
(6.63)
-
c. If the individual’s metabolic rate is 80 kcal/h (93.0 W) and breathing accounts for a loss of 10
kcal/h (11.6 W), how much additional heat must be lost by evaporation to keep the body core
temperature constant? Aas = 43 kcal/h or 50w
d. How would you suggest that he loses this energy? Explain your answer clearly and convincingly.
Transcribed Image Text:Give step-by-step calculation and explanation Consider a person sitting nude on a beach in Florida. On a sunny day, visible radiation energy from the sun is absorbed by the person at a rate of 30 kcal/h or 34.9 W. The air temperature is a warm 30 °C and the individual’s skin temperature is 32 °C. The effective body surface exposed to the sun is 0.9 m². (Assume this same area for sun absorption, radiative transfer, and convective loss. Is this a good assumption?) a. Find the net energy gain or loss from thermal radiation each hour. (Assume thermal radiative gain and loss according to the equation 6.51 in Herman and an emissivity of 1.) Answeer a 21kcal/hr or 2YD -(4). Eguadion (6.51) - (40 Tin)Eskin Askin (Tskin – Troom) dt = (4 x 5.67 x 10¬8 w/m²–K* x (307 K)³)€skin Aşkin (Tskin – Troom) - (6.52) b. If there is a 4 m/s breeze, find the energy lost by convection each hour. (Use Eq. 6.61 with eq. 6.63.) Àns 48 kcal /hr or 24W 1 Equation h.(Tskin – Tair), (6.61) A dt he 10.45 – w + 10w0.5 (6.63) - c. If the individual’s metabolic rate is 80 kcal/h (93.0 W) and breathing accounts for a loss of 10 kcal/h (11.6 W), how much additional heat must be lost by evaporation to keep the body core temperature constant? Aas = 43 kcal/h or 50w d. How would you suggest that he loses this energy? Explain your answer clearly and convincingly.
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Thermal expansion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON