Consider a mass m that oscillates without damping on a spring with Hooke's constant k, so that its position function x(t) satisfies the differential equation x" + w²x = 0 (where w? = k/m). If we introduce the velocity y = dx/dt of the mass, we get the system dx = y, dt dy -w?x dt
Consider a mass m that oscillates without damping on a spring with Hooke's constant k, so that its position function x(t) satisfies the differential equation x" + w²x = 0 (where w? = k/m). If we introduce the velocity y = dx/dt of the mass, we get the system dx = y, dt dy -w?x dt
Related questions
Question
Find the general solution?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 5 images