Consider a linear transformation T: R2 ⟶ R3, whose matrix T. Also consider the bases β={(1,0),(0,1)} base of R2 and β′={(1,0,1),(−2,0,1),(0,1,0)} base of R3. So what's the image T(1, -3,)?    Choose an option: (a) T (1,−3) = 4.(1, 0, 1) − 3.(−2, 0, 1) + 11.(0, 1, 0) (b) T (1,−3) = 4.(1, 0, 1) + 3.(−2, 0, 1) − 11.(0, 1, 0) (c) T (1,−3) = 4.(1, 0, 1) + 3.(−2, 0, 1) + 11.(0, 1, 0) (d) T (1,−3) = 4.(1, 0, 1) − 3.(−2, 0, 1) − 11(0, 1, 0) (e) T (1,−3) = −4.(1, 0, 1) − 3.(−2, 0, 1) − 11.(0, 1, 0)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Consider a linear transformation T: R2 ⟶ R3, whose matrix T.

Also consider the bases β={(1,0),(0,1)} base of R2 and β′={(1,0,1),(−2,0,1),(0,1,0)} base of R3. So what's the image T(1, -3,)? 

 

Choose an option:

(a) T (1,−3) = 4.(1, 0, 1) − 3.(−2, 0, 1) + 11.(0, 1, 0)

(b) T (1,−3) = 4.(1, 0, 1) + 3.(−2, 0, 1) − 11.(0, 1, 0)

(c) T (1,−3) = 4.(1, 0, 1) + 3.(−2, 0, 1) + 11.(0, 1, 0)

(d) T (1,−3) = 4.(1, 0, 1) − 3.(−2, 0, 1) − 11(0, 1, 0)

(e) T (1,−3) = −4.(1, 0, 1) − 3.(−2, 0, 1) − 11.(0, 1, 0)

 
 
 
 
 
 
 
1
–1
[T
L-2
3
||
Transcribed Image Text:1 –1 [T L-2 3 ||
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,