Assume that T is a linear transformation. Find the standard matrix of T. T: R2→R“, T(e,) = (8, 1, 8, 1), and T (e2) = (-6, 9, 0, 0), where e, = (1,0) and e2 = (0,1).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Assume that \( T \) is a linear transformation. Find the standard matrix of \( T \).

**Given:**

\[ T: \mathbb{R}^2 \to \mathbb{R}^4 \]

\[ T(\mathbf{e}_1) = (8, 1, 8, 1) \]

\[ T(\mathbf{e}_2) = (-6, 9, 0, 0) \]

where \( \mathbf{e}_1 = (1, 0) \) and \( \mathbf{e}_2 = (0, 1) \).

**Objective:**

Determine the standard matrix representation of the linear transformation \( T \).

**Explanation:**

To find the standard matrix \( A \) of the transformation \( T \), we use the images of the standard basis vectors in the domain:

\[ 
A = \begin{bmatrix}
| & | \\
T(\mathbf{e}_1) & T(\mathbf{e}_2) \\
| & |
\end{bmatrix} 
= 
\begin{bmatrix}
8 & -6 \\
1 & 9 \\
8 & 0 \\
1 & 0
\end{bmatrix}
\]

Thus, the standard matrix \( A \) for the transformation \( T \) is a \( 4 \times 2 \) matrix.
Transcribed Image Text:**Problem Statement:** Assume that \( T \) is a linear transformation. Find the standard matrix of \( T \). **Given:** \[ T: \mathbb{R}^2 \to \mathbb{R}^4 \] \[ T(\mathbf{e}_1) = (8, 1, 8, 1) \] \[ T(\mathbf{e}_2) = (-6, 9, 0, 0) \] where \( \mathbf{e}_1 = (1, 0) \) and \( \mathbf{e}_2 = (0, 1) \). **Objective:** Determine the standard matrix representation of the linear transformation \( T \). **Explanation:** To find the standard matrix \( A \) of the transformation \( T \), we use the images of the standard basis vectors in the domain: \[ A = \begin{bmatrix} | & | \\ T(\mathbf{e}_1) & T(\mathbf{e}_2) \\ | & | \end{bmatrix} = \begin{bmatrix} 8 & -6 \\ 1 & 9 \\ 8 & 0 \\ 1 & 0 \end{bmatrix} \] Thus, the standard matrix \( A \) for the transformation \( T \) is a \( 4 \times 2 \) matrix.
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,