Consider a Boeing 747 airliner cruising at a velocity of 550 mi/h at a standard altitude of 38,000 ft, where the freestream pressure and temperature are 432.6 lb/ft2 and 390◦R, respectively. A one-fiftieth scale model of the 747 is tested in a wind tunnel where the temperature is 430◦R. Calculate the required velocity and pressure of the test airstream in the wind tunnel such that the lift and drag coefficients measured for the wind-tunnel model are the same as for free flight. Assume that both μ and a are proportional to T 1/2.
Fluid Pressure
The term fluid pressure is coined as, the measurement of the force per unit area of a given surface of a closed container. It is a branch of physics that helps to study the properties of fluid under various conditions of force.
Gauge Pressure
Pressure is the physical force acting per unit area on a body; the applied force is perpendicular to the surface of the object per unit area. The air around us at sea level exerts a pressure (atmospheric pressure) of about 14.7 psi but this doesn’t seem to bother anyone as the bodily fluids are constantly pushing outwards with the same force but if one swims down into the ocean a few feet below the surface one can notice the difference, there is increased pressure on the eardrum, this is due to an increase in hydrostatic pressure.
Consider a Boeing 747 airliner cruising at a velocity of 550 mi/h at a standard altitude of 38,000 ft, where the freestream pressure and temperature are 432.6 lb/ft2 and 390◦R, respectively. A one-fiftieth scale model of the 747 is tested in a wind tunnel where the temperature is 430◦R. Calculate the required velocity and pressure of the test airstream in the wind tunnel such that the lift and drag coefficients measured for the wind-tunnel model are the same as for free flight. Assume that both μ and a are proportional to T 1/2.
Trending now
This is a popular solution!
Step by step
Solved in 5 steps