Concerning the polynomial p(x) = ao+a₁x + +anx", prove the following result. For a given x, we set (an, Pn, Yn) = (an, 0, 0) and define inductively (aj, B₁, y) = (a + xαj+1, α;+1+xBj+1, B₁+1 + xyj+1) for j=n-1, n-2,...,0. Then p(x) = ao, p'(x) = Bo, and p"(x) = 270.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
16. Concerning the polynomial \( p(x) = a_0 + a_1 x + \cdots + a_n x^n \), prove the following result. For a given \( x \), we set \( (\alpha_n, \beta_n, \gamma_n) = (a_n, 0, 0) \) and define inductively 

\[
(\alpha_j, \beta_j, \gamma_j) = (a_j + x \alpha_{j+1}, \alpha_{j+1} + x \beta_{j+1}, \beta_{j+1} + x \gamma_{j+1})
\]

for \( j = n-1, n-2, \ldots, 0 \). Then \( p(x) = \alpha_0 \), \( p'(x) = \beta_0 \), and \( p''(x) = 2\gamma_0 \).
Transcribed Image Text:16. Concerning the polynomial \( p(x) = a_0 + a_1 x + \cdots + a_n x^n \), prove the following result. For a given \( x \), we set \( (\alpha_n, \beta_n, \gamma_n) = (a_n, 0, 0) \) and define inductively \[ (\alpha_j, \beta_j, \gamma_j) = (a_j + x \alpha_{j+1}, \alpha_{j+1} + x \beta_{j+1}, \beta_{j+1} + x \gamma_{j+1}) \] for \( j = n-1, n-2, \ldots, 0 \). Then \( p(x) = \alpha_0 \), \( p'(x) = \beta_0 \), and \( p''(x) = 2\gamma_0 \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,