Compute the Riemann sum E f(x;)Ax for f(x) = x³, [a, b] = [0, 3]. i=1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Task Overview:**

Compute the Riemann sum \(\sum_{i=1}^{n} f(x_i) \Delta x\) for \(f(x) = x^3\), \([a, b] = [0, 3]\).

**Options:**

1. \(\frac{81}{4} \left( 1 + \frac{1}{n} \right)^2\)

2. \(81 \left( \frac{1}{2} + \frac{1}{n} \right)^2\)

3. \(\left( \frac{9}{2} + \frac{1}{n} \right)^2\)

4. \(\frac{81}{2} \left( 1 + \frac{1}{n} \right) \left( \frac{1}{2} + \frac{1}{n} \right)\)

5. \(\frac{1}{4} \left( 9 + \frac{1}{n} \right)^2\)

**Explanation:**

This task involves computing a Riemann sum for the function \( f(x) = x^3 \) over the interval \([0, 3]\). Riemann sums are used as an approximation of the integral of a function over a specific interval. Each choice represents a possible expression for this computed sum, formed through manipulation of the function and interval given.
Transcribed Image Text:**Task Overview:** Compute the Riemann sum \(\sum_{i=1}^{n} f(x_i) \Delta x\) for \(f(x) = x^3\), \([a, b] = [0, 3]\). **Options:** 1. \(\frac{81}{4} \left( 1 + \frac{1}{n} \right)^2\) 2. \(81 \left( \frac{1}{2} + \frac{1}{n} \right)^2\) 3. \(\left( \frac{9}{2} + \frac{1}{n} \right)^2\) 4. \(\frac{81}{2} \left( 1 + \frac{1}{n} \right) \left( \frac{1}{2} + \frac{1}{n} \right)\) 5. \(\frac{1}{4} \left( 9 + \frac{1}{n} \right)^2\) **Explanation:** This task involves computing a Riemann sum for the function \( f(x) = x^3 \) over the interval \([0, 3]\). Riemann sums are used as an approximation of the integral of a function over a specific interval. Each choice represents a possible expression for this computed sum, formed through manipulation of the function and interval given.
Expert Solution
Step 1

Given:

fx=x3,a,b=0,3

We want to calculate i=1nfxix

Step 2

Calculation:

Given fx=x3,a,b=0,3

Therefore 

x=b-an and xi=a+ix

Hence 

x=3-0nx=3n

Now 

xi=0+i3nxi=3in

Therefore Riemann sum 

i=1nfxix=i=1n3in33n=3ni=1n27i3n3=81n4i=1ni3=81n4×n2n+124   ..........i=1ni3=n2n+124=814×n+12n2=814n+1n2i=1nfxix=8141+1n2

Hence i=1nfxix=8141+1n2

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Definite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,