Compute the orthogonal projection of = 3 onto the line L through -2 and the origin 2 proj, (v) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Orthogonal Projection of a Vector onto a Line

**Problem Statement:**
Compute the orthogonal projection of \( \vec{v} = \begin{bmatrix} 8 \\ 3 \\ 9 \end{bmatrix} \) onto the line \( \mathcal{L} \) through \( \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \) and the origin.

**Mathematical Expression:**

The orthogonal projection of \( \vec{v} \) onto \( \mathcal{L} \) is given by:

\[ \text{proj}_{\mathcal{L}} (\vec{v}) = \begin{bmatrix} * \\ * \\ * \end{bmatrix} \]

where the asterisks represent the components of the projection vector.

### Explanation:

The orthogonal projection of vector \( \vec{v} \) onto a line \( \mathcal{L} \) can be computed using the formula:

\[ \text{proj}_{\vec{a}} \vec{v} = \frac{\vec{v} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a} \]

where \( \vec{a} \) is a direction vector of the line \( \mathcal{L} \), and \( \vec{v} \cdot \vec{a} \) denotes the dot product of \( \vec{v} \) and \( \vec{a} \).

Here, the line \( \mathcal{L} \) passes through \( \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \) and the origin \( \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \), thus \( \vec{a} \) is \( \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \). 

### Steps to Solve:

1. **Calculate the Dot Product**:
   \[ \vec{v} \cdot \vec{a} = \begin{bmatrix} 8 \\ 3 \\ 9 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}
Transcribed Image Text:### Orthogonal Projection of a Vector onto a Line **Problem Statement:** Compute the orthogonal projection of \( \vec{v} = \begin{bmatrix} 8 \\ 3 \\ 9 \end{bmatrix} \) onto the line \( \mathcal{L} \) through \( \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \) and the origin. **Mathematical Expression:** The orthogonal projection of \( \vec{v} \) onto \( \mathcal{L} \) is given by: \[ \text{proj}_{\mathcal{L}} (\vec{v}) = \begin{bmatrix} * \\ * \\ * \end{bmatrix} \] where the asterisks represent the components of the projection vector. ### Explanation: The orthogonal projection of vector \( \vec{v} \) onto a line \( \mathcal{L} \) can be computed using the formula: \[ \text{proj}_{\vec{a}} \vec{v} = \frac{\vec{v} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a} \] where \( \vec{a} \) is a direction vector of the line \( \mathcal{L} \), and \( \vec{v} \cdot \vec{a} \) denotes the dot product of \( \vec{v} \) and \( \vec{a} \). Here, the line \( \mathcal{L} \) passes through \( \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \) and the origin \( \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \), thus \( \vec{a} \) is \( \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \). ### Steps to Solve: 1. **Calculate the Dot Product**: \[ \vec{v} \cdot \vec{a} = \begin{bmatrix} 8 \\ 3 \\ 9 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,