Compute the following block products: A11 B11 || 1 0 0 --**-**4] 0 1 -5 5 0 0 -1 -5 -6 Let C = AB. Then C can be computed by block multiplication: c = [C₁1 C1₂] - C = [ C22 1 c=[CH CH₂2]- C21 A = [ALI B = A11 A12 A12B21 B11 B12 B21 B22 -1 = Use them to find C₁1, and then evaluate the remaining blocks of C similarly: 6 -2 -2 4 2 6 3 4 −1 1 1 [A11B11+A12B21 A21B11 + A22B21 -5 5 -5 non 6 5 5 1 -4 0 5 A11B12 + A12B22 A21 B12 + A22 B22

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Matrix Multiplication Using Block Matrices**

We have two matrices, \( A \) and \( B \), expressed as block matrices:

\[ 
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 4 & 5 \\ 0 & 1 & -5 & 5 & -4 \\ 0 & 0 & -1 & -5 & -6 \end{bmatrix} 
\]

\[ 
B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} 6 & -2 & -2 & -5 \\ 4 & 2 & 5 & -5 \\ 6 & 3 & 6 & 5 \\ 4 & -1 & 5 & 1 \\ 1 & 1 & -4 & 0 \end{bmatrix} 
\]

**Objective:**
Let \( C = AB \). Then \( C \) can be computed by block multiplication:

\[ 
C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix} 
\]

**Instructions for Calculation:**

1. **Compute the Block Products:**
   - \( A_{11}B_{11} \) (top left matrix block)
   - \( A_{12}B_{21} \) (top left supplementary matrix block)

2. **Use these products to find \( C_{11} \), and then evaluate the remaining blocks of \( C \) similarly:**

\[ 
C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} 
\]

**
Transcribed Image Text:**Matrix Multiplication Using Block Matrices** We have two matrices, \( A \) and \( B \), expressed as block matrices: \[ A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 4 & 5 \\ 0 & 1 & -5 & 5 & -4 \\ 0 & 0 & -1 & -5 & -6 \end{bmatrix} \] \[ B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} 6 & -2 & -2 & -5 \\ 4 & 2 & 5 & -5 \\ 6 & 3 & 6 & 5 \\ 4 & -1 & 5 & 1 \\ 1 & 1 & -4 & 0 \end{bmatrix} \] **Objective:** Let \( C = AB \). Then \( C \) can be computed by block multiplication: \[ C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix} \] **Instructions for Calculation:** 1. **Compute the Block Products:** - \( A_{11}B_{11} \) (top left matrix block) - \( A_{12}B_{21} \) (top left supplementary matrix block) 2. **Use these products to find \( C_{11} \), and then evaluate the remaining blocks of \( C \) similarly:** \[ C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} \] **
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,