Compute ATBT and BT AT by hand if possible. If not possible, describe why. A = 2 3 −1 0 B = 10 -1 0 9 -1 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
To compute \( A^T B^T \) and \( B^T A^T \) by hand, we are given the matrices:

\[ A = \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} \]

\[ B = \begin{bmatrix} 10 & 0 & 9 \\ -1 & -1 & 0 \end{bmatrix} \]

### Transpose of Matrices

The transpose of a matrix is obtained by swapping its rows and columns. 

- **Transpose of A (\( A^T \)):**

  \[ A^T = \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} \]

- **Transpose of B (\( B^T \)):**

  \[ B^T = \begin{bmatrix} 10 & -1 \\ 0 & -1 \\ 9 & 0 \end{bmatrix} \]

### Matrix Multiplication

#### Calculating \( A^T B^T \)

- **Dimensions of \( A^T \):** \( 2 \times 2 \)
- **Dimensions of \( B^T \):** \( 3 \times 2 \)

The matrix multiplication \( A^T B^T \) is not possible because the number of columns in \( A^T \) does not match the number of rows in \( B^T \).

#### Calculating \( B^T A^T \)

- **Dimensions of \( B^T \):** \( 3 \times 2 \)
- **Dimensions of \( A^T \):** \( 2 \times 2 \)

The resulting matrix from \( B^T A^T \) will be of dimension \( 3 \times 2 \), and can be computed as follows:

1. **First row of \( B^T \) and columns of \( A^T \):**

   \[ (10 \times 2) + (-1 \times -1) = 20 + 1 = 21 \]
   \[ (10 \times 3) + (-1 \times 0) = 30 + 0 = 30 \]

2. **Second row of \( B^T \) and columns of \( A^T \):**

   \[ (0
Transcribed Image Text:To compute \( A^T B^T \) and \( B^T A^T \) by hand, we are given the matrices: \[ A = \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} \] \[ B = \begin{bmatrix} 10 & 0 & 9 \\ -1 & -1 & 0 \end{bmatrix} \] ### Transpose of Matrices The transpose of a matrix is obtained by swapping its rows and columns. - **Transpose of A (\( A^T \)):** \[ A^T = \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} \] - **Transpose of B (\( B^T \)):** \[ B^T = \begin{bmatrix} 10 & -1 \\ 0 & -1 \\ 9 & 0 \end{bmatrix} \] ### Matrix Multiplication #### Calculating \( A^T B^T \) - **Dimensions of \( A^T \):** \( 2 \times 2 \) - **Dimensions of \( B^T \):** \( 3 \times 2 \) The matrix multiplication \( A^T B^T \) is not possible because the number of columns in \( A^T \) does not match the number of rows in \( B^T \). #### Calculating \( B^T A^T \) - **Dimensions of \( B^T \):** \( 3 \times 2 \) - **Dimensions of \( A^T \):** \( 2 \times 2 \) The resulting matrix from \( B^T A^T \) will be of dimension \( 3 \times 2 \), and can be computed as follows: 1. **First row of \( B^T \) and columns of \( A^T \):** \[ (10 \times 2) + (-1 \times -1) = 20 + 1 = 21 \] \[ (10 \times 3) + (-1 \times 0) = 30 + 0 = 30 \] 2. **Second row of \( B^T \) and columns of \( A^T \):** \[ (0
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,