Compute the first-order partial derivatives of the function. 2х W = (x² + y² + z?)"2 (Use symbolic notation and fractions where needed.) -18:2(? + y² + 2) -x(? +y? + ?)* dw dx Incorrect dw ду -18x) +. dw dz +z II

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

How to solve this?

**Compute the first-order partial derivatives of the function.**

\[ w = \frac{2x}{(x^2 + y^2 + z^2)^{\frac{9}{2}}} \]

(Use symbolic notation and fractions where needed.)

---

**Partial Derivative with respect to \(x\):**

\[\frac{\partial w}{\partial x} = \frac{-18x^2(x^2 + y^2 + z^2)^{\frac{7}{2}} - x(x^2 + y^2 + z^2)^{\frac{9}{2}}}{(x^2 + y^2 + z^2)^9}\]

(Incorrect)

---

**Partial Derivative with respect to \(y\):**

\[\frac{\partial w}{\partial y} = -18xy(x^2 + y^2 + z^2)^{-\frac{11}{2}}\]

---

**Partial Derivative with respect to \(z\):**

\[\frac{\partial w}{\partial z} = -18xz(x^2 + y^2 + z^2)^{-\frac{11}{2}}\]
Transcribed Image Text:**Compute the first-order partial derivatives of the function.** \[ w = \frac{2x}{(x^2 + y^2 + z^2)^{\frac{9}{2}}} \] (Use symbolic notation and fractions where needed.) --- **Partial Derivative with respect to \(x\):** \[\frac{\partial w}{\partial x} = \frac{-18x^2(x^2 + y^2 + z^2)^{\frac{7}{2}} - x(x^2 + y^2 + z^2)^{\frac{9}{2}}}{(x^2 + y^2 + z^2)^9}\] (Incorrect) --- **Partial Derivative with respect to \(y\):** \[\frac{\partial w}{\partial y} = -18xy(x^2 + y^2 + z^2)^{-\frac{11}{2}}\] --- **Partial Derivative with respect to \(z\):** \[\frac{\partial w}{\partial z} = -18xz(x^2 + y^2 + z^2)^{-\frac{11}{2}}\]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning