Compute the exact value of tan(255 °)

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
**Compute the Exact Value of \(\tan(255^\circ)\)**

To solve this problem, we need to understand how to find the tangent of an angle that isn't one of the common angles found on the unit circle. We can use trigonometric identities and angle transformations to compute this value precisely.

1. **Identify the Reference Angle**: 
   - The reference angle for \(\theta = 255^\circ\) is \(255^\circ - 180^\circ = 75^\circ\).

2. **Use Trigonometric Identities**:
   - \(\tan(255^\circ) = \tan(180^\circ + 75^\circ)\).
   - By using the identity \(\tan(180^\circ + \theta) = \tan(\theta)\), we find that:
   - \(\tan(255^\circ) = \tan(75^\circ)\).

3. **Acquiring the Exact Value of \(\tan(75^\circ)\)**:
   - \(\tan(75^\circ) = \tan(45^\circ + 30^\circ)\).
   - Using the tangent addition formula \(\tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}\):
     - Let \(a = 45^\circ\) and \(b = 30^\circ\).
     - \(\tan 45^\circ = 1\) and \(\tan 30^\circ = \frac{\sqrt{3}}{3}\).
     - \(\tan(75^\circ) = \frac{1 + \frac{\sqrt{3}}{3}}{1 - 1 \times \frac{\sqrt{3}}{3}}\).
     - Simplifying gives \(\tan(75^\circ) = 2 + \sqrt{3}\).

4. **Conclusion**:
   - Therefore, \(\tan(255^\circ) = 2 + \sqrt{3}\).

This approach combines multiple trigonometric properties and identities to achieve the exact value of the tangent function for a non-standard angle.
Transcribed Image Text:**Compute the Exact Value of \(\tan(255^\circ)\)** To solve this problem, we need to understand how to find the tangent of an angle that isn't one of the common angles found on the unit circle. We can use trigonometric identities and angle transformations to compute this value precisely. 1. **Identify the Reference Angle**: - The reference angle for \(\theta = 255^\circ\) is \(255^\circ - 180^\circ = 75^\circ\). 2. **Use Trigonometric Identities**: - \(\tan(255^\circ) = \tan(180^\circ + 75^\circ)\). - By using the identity \(\tan(180^\circ + \theta) = \tan(\theta)\), we find that: - \(\tan(255^\circ) = \tan(75^\circ)\). 3. **Acquiring the Exact Value of \(\tan(75^\circ)\)**: - \(\tan(75^\circ) = \tan(45^\circ + 30^\circ)\). - Using the tangent addition formula \(\tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}\): - Let \(a = 45^\circ\) and \(b = 30^\circ\). - \(\tan 45^\circ = 1\) and \(\tan 30^\circ = \frac{\sqrt{3}}{3}\). - \(\tan(75^\circ) = \frac{1 + \frac{\sqrt{3}}{3}}{1 - 1 \times \frac{\sqrt{3}}{3}}\). - Simplifying gives \(\tan(75^\circ) = 2 + \sqrt{3}\). 4. **Conclusion**: - Therefore, \(\tan(255^\circ) = 2 + \sqrt{3}\). This approach combines multiple trigonometric properties and identities to achieve the exact value of the tangent function for a non-standard angle.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning