Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![**Computing Eigenvalues and Bases of Eigenspaces**
To determine the eigenvalues and bases of eigenspaces for a given matrix \( A \), follow these steps:
Given matrix:
\[
A = \begin{bmatrix}
-2 & 1 & 4 \\
4 & 1 & -4 \\
-1 & 1 & 3
\end{bmatrix}
\]
1. **Compute the Eigenvalues**:
Eigenvalues (\(\lambda\)) of a matrix \( A \) are found by solving the characteristic equation:
\[
\det(A - \lambda I) = 0
\]
Here, \( I \) is the identity matrix of the same dimension as \( A \), and \( \det \) denotes the determinant.
2. **Construct the Matrix \( A - \lambda I \)**:
\[
A - \lambda I = \begin{bmatrix}
-2-\lambda & 1 & 4 \\
4 & 1-\lambda & -4 \\
-1 & 1 & 3-\lambda
\end{bmatrix}
\]
3. **Compute the Determinant of \( A - \lambda I \)**:
\[
\det(A - \lambda I) = \begin{vmatrix}
-2-\lambda & 1 & 4 \\
4 & 1-\lambda & -4 \\
-1 & 1 & 3-\lambda
\end{vmatrix}
\]
Calculate this determinant to find the characteristic polynomial and set it equal to zero to solve for the eigenvalues.
4. **Solve for the Eigenvalues**:
Find the roots of the characteristic polynomial obtained from the determinant calculation. These roots are the eigenvalues \( \lambda_1, \lambda_2, \lambda_3 \).
5. **Find the Eigenspaces**:
For each eigenvalue \(\lambda_i\), solve the system of linear equations:
\[
(A - \lambda_i I)\mathbf{x} = \mathbf{0}
\]
where \(\mathbf{x}\) is the eigenvector corresponding to \(\lambda_i\).
6. **Form the Basis for Each Eigenspace**:
The nontrivial solutions to the above system give the](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F63ea7450-a183-49e4-8fe5-4699c8139185%2F74df9517-cbe2-402e-a7c7-afee4d68274a%2Fhbwn8ul.png&w=3840&q=75)
Transcribed Image Text:**Computing Eigenvalues and Bases of Eigenspaces**
To determine the eigenvalues and bases of eigenspaces for a given matrix \( A \), follow these steps:
Given matrix:
\[
A = \begin{bmatrix}
-2 & 1 & 4 \\
4 & 1 & -4 \\
-1 & 1 & 3
\end{bmatrix}
\]
1. **Compute the Eigenvalues**:
Eigenvalues (\(\lambda\)) of a matrix \( A \) are found by solving the characteristic equation:
\[
\det(A - \lambda I) = 0
\]
Here, \( I \) is the identity matrix of the same dimension as \( A \), and \( \det \) denotes the determinant.
2. **Construct the Matrix \( A - \lambda I \)**:
\[
A - \lambda I = \begin{bmatrix}
-2-\lambda & 1 & 4 \\
4 & 1-\lambda & -4 \\
-1 & 1 & 3-\lambda
\end{bmatrix}
\]
3. **Compute the Determinant of \( A - \lambda I \)**:
\[
\det(A - \lambda I) = \begin{vmatrix}
-2-\lambda & 1 & 4 \\
4 & 1-\lambda & -4 \\
-1 & 1 & 3-\lambda
\end{vmatrix}
\]
Calculate this determinant to find the characteristic polynomial and set it equal to zero to solve for the eigenvalues.
4. **Solve for the Eigenvalues**:
Find the roots of the characteristic polynomial obtained from the determinant calculation. These roots are the eigenvalues \( \lambda_1, \lambda_2, \lambda_3 \).
5. **Find the Eigenspaces**:
For each eigenvalue \(\lambda_i\), solve the system of linear equations:
\[
(A - \lambda_i I)\mathbf{x} = \mathbf{0}
\]
where \(\mathbf{x}\) is the eigenvector corresponding to \(\lambda_i\).
6. **Form the Basis for Each Eigenspace**:
The nontrivial solutions to the above system give the
![**Problem Statement**
Compute the eigenvalues and bases of eigenspaces of the following matrix:
\[
A = \begin{bmatrix}
-2 & -2 \\
6 & 5
\end{bmatrix}.
\]
**Solution**
To find the eigenvalues \(\lambda\) of the matrix \(A\), we need to solve the characteristic equation \(\det(A - \lambda I) = 0\), where \(I\) is the identity matrix of the same dimension as \(A\).
1. Construct the matrix \(A - \lambda I\):
\[
A - \lambda I = \begin{bmatrix}
-2 - \lambda & -2 \\
6 & 5 - \lambda
\end{bmatrix}.
\]
2. Compute the determinant of the matrix \(A - \lambda I\):
\[
\det(A - \lambda I) = \begin{vmatrix}
-2 - \lambda & -2 \\
6 & 5 - \lambda
\end{vmatrix} = (-2 - \lambda)(5 - \lambda) - (-2)(6).
\]
3. Expand the determinant:
\[
(-2 - \lambda)(5 - \lambda) + 12 = \lambda^2 - 3\lambda - 10 + 12 = \lambda^2 - 3\lambda + 2.
\]
4. Set the determinant equal to zero:
\[
\lambda^2 - 3\lambda + 2 = 0.
\]
5. Solve the quadratic equation for \(\lambda\):
\[
(\lambda - 1)(\lambda - 2) = 0.
\]
6. Therefore, the eigenvalues are \(\lambda_1 = 1\) and \(\lambda_2 = 2\).
**Finding Eigenspaces**
Next, we need to find the eigenvectors corresponding to each eigenvalue to determine the bases of the eigenspaces.
1. For \(\lambda_1 = 1\):
\[
A - \lambda_1 I = \begin{bmatrix}
-2 - 1 & -2 \\
6 & 5 - 1
\end{bmatrix} = \begin{bmatrix}
-3 & -2 \\
6 & 4
\end{bmatrix}.
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F63ea7450-a183-49e4-8fe5-4699c8139185%2F74df9517-cbe2-402e-a7c7-afee4d68274a%2Fe040c.png&w=3840&q=75)
Transcribed Image Text:**Problem Statement**
Compute the eigenvalues and bases of eigenspaces of the following matrix:
\[
A = \begin{bmatrix}
-2 & -2 \\
6 & 5
\end{bmatrix}.
\]
**Solution**
To find the eigenvalues \(\lambda\) of the matrix \(A\), we need to solve the characteristic equation \(\det(A - \lambda I) = 0\), where \(I\) is the identity matrix of the same dimension as \(A\).
1. Construct the matrix \(A - \lambda I\):
\[
A - \lambda I = \begin{bmatrix}
-2 - \lambda & -2 \\
6 & 5 - \lambda
\end{bmatrix}.
\]
2. Compute the determinant of the matrix \(A - \lambda I\):
\[
\det(A - \lambda I) = \begin{vmatrix}
-2 - \lambda & -2 \\
6 & 5 - \lambda
\end{vmatrix} = (-2 - \lambda)(5 - \lambda) - (-2)(6).
\]
3. Expand the determinant:
\[
(-2 - \lambda)(5 - \lambda) + 12 = \lambda^2 - 3\lambda - 10 + 12 = \lambda^2 - 3\lambda + 2.
\]
4. Set the determinant equal to zero:
\[
\lambda^2 - 3\lambda + 2 = 0.
\]
5. Solve the quadratic equation for \(\lambda\):
\[
(\lambda - 1)(\lambda - 2) = 0.
\]
6. Therefore, the eigenvalues are \(\lambda_1 = 1\) and \(\lambda_2 = 2\).
**Finding Eigenspaces**
Next, we need to find the eigenvectors corresponding to each eigenvalue to determine the bases of the eigenspaces.
1. For \(\lambda_1 = 1\):
\[
A - \lambda_1 I = \begin{bmatrix}
-2 - 1 & -2 \\
6 & 5 - 1
\end{bmatrix} = \begin{bmatrix}
-3 & -2 \\
6 & 4
\end{bmatrix}.
\]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 6 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Recommended textbooks for you

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education